【每日一题】栈实战:解析输入输出序列的逻辑

在数据结构中,栈(Stack)是一种非常重要的线性数据结构。栈的特点是遵循“后进先出”(LIFO,Last In, First Out)的原则。也就是说,最后压入栈的元素最先出栈。栈的应用非常广泛,常见于表达式求值、括号匹配、深度优先搜索等问题。

今天,我们将通过两个实际的栈操作题目,帮助大家更好地理解栈的工作原理,并讲解如何在具体问题中应用栈。我们将通过解析这两道题,带你一步步深入理解栈的操作。

本文需要读者具有栈的基本知识,若不清楚可参考以下文章:

实战

题目均出自王道2024考研数据结构。

题目一

若栈的输入序列是 P 1 , P 2 , … , P n P_1, P_2, \ldots, P_n P1,P2,,Pn,输出序列是 1 , 2 , 3 , … , n 1, 2, 3, \ldots, n 1,2,3,,n,若 P 3 = 1 P_3 = 1 P3=1,则 P 1 P_1 P1 的值?

A. 可能是2
B. 一定是2
C. 不可能是2
D. 不可能是3

解析:

题目给定了一个输入序列和一个输出序列,要求我们根据栈的操作顺序推测 P 1 P_1 P1 的值,并且给出多个选项。我们知道栈遵循“后进先出”(LIFO)的原则,即最后压入栈的元素最先出栈。根据这个原则,我们来一步步分析。

题目给定的信息:

  • 输出序列必须是 1 , 2 , 3 , … , n 1, 2, 3, \ldots, n 1,2,3,,n,即数字 1 必须最先出栈。
  • P 3 = 1 P_3 = 1 P3=1,即数字 1 是第三个压入栈的元素。
栈操作的推导:

为了确保输出序列 1 , 2 , 3 , … , n 1, 2, 3, \ldots, n 1,2,3,,n 是有效的,我们需要模拟栈的操作过程,特别是数字 1 在栈中的位置。我们可以将栈的状态通过链表形式来表示。假设每个压栈操作时栈的变化为:

  • 初始栈状态为空:[]
  • 压入 P 1 P_1 P1[P_1]
  • 压入 P 2 P_2 P2[P_1, P_2]
  • 压入 P 3 P_3 P3 时, P 3 = 1 P_3 = 1 P3=1[P_1, P_2, 1]

现在,我们分析栈的出栈过程。我们必须确保数字 1 在最先出栈,数字 2 和 3 按照顺序依次出栈。

场景一:假设 P 1 = 2 P_1 = 2 P1=2

我们尝试设置 P 1 = 2 P_1 = 2 P1=2,那么栈的操作流程如下:

  • 步骤 1: 压入 2 → [2]
  • 步骤 2: 压入 3 → [2, 3]
  • 步骤 3: 压入 1 → [2, 3, 1]

此时栈的状态是 [2, 3, 1]。现在出栈:

  • 步骤 4: 出栈 1 → [2, 3],数字 1 最先出栈。
  • 步骤 5: 出栈 3 → [2]
  • 步骤 6: 出栈 2 → []

这个过程符合输出序列 1 , 2 , 3 1, 2, 3 1,2,3,因此 P 1 = 2 P_1 = 2 P1=2 是可能的。

场景二:假设 P 1 = 3 P_1 = 3 P1=3

如果 P 1 = 3 P_1 = 3 P1=3,那么栈的操作流程如下:

  • 步骤 1: 压入 3 → [3]
  • 步骤 2: 压入 2 → [3, 2]
  • 步骤 3: 压入 1 → [3, 2, 1]

此时栈的状态是 [3, 2, 1]。现在出栈:

  • 步骤 4: 出栈 1 → [3, 2]
  • 步骤 5: 出栈 2 → [3]
  • 步骤 6: 出栈 3 → []

这里数字 3 最先出栈,显然与输出序列 1 , 2 , 3 1, 2, 3 1,2,3 不符合。因此 P 1 = 3 P_1 = 3 P1=3 是不可能的。

结论:
  • 如果 P 1 = 2 P_1 = 2 P1=2,栈操作完全符合要求。
  • 如果 P 1 = 3 P_1 = 3 P1=3,栈操作顺序无法满足要求。

因此,C. 不可能是2 是正确答案。


题目二

若栈的输入序列是 P 1 , P 2 , … , P n P_1, P_2, \ldots, P_n P1,P2,,Pn,输出序列是 1 , 2 , 3 , … , n 1, 2, 3, \ldots, n 1,2,3,,n,若 P 3 = 3 P_3 = 3 P3=3,则 P 1 P_1 P1 的值是?

A. 可能是2
B. 不可能是1
C. 一定是1
D. 一定是2

解析:

给定 P 3 = 3 P_3 = 3 P3=3,即数字 3 是第三个压入栈的元素。我们需要根据栈的操作顺序推测 P 1 P_1 P1 的值。我们知道输出序列应该是按顺序出栈的,其中 1 必须最先出栈。

首先我们确定一个关键点:为了确保 1 最先出栈,数字 1 必须在 3 被压入栈之前就已经被压入栈,并且在 3 被压入栈后不允许再出栈。

场景一:假设 P 1 = 1 P_1 = 1 P1=1

如果 P 1 = 1 P_1 = 1 P1=1,栈操作如下:

  • 步骤 1: 压入 1 → [1]
  • 步骤 2: 压入 2 → [1, 2]
  • 步骤 3: 压入 3 → [1, 2, 3]

此时栈的状态是 [1, 2, 3],出栈顺序为:

  • 步骤 4: 出栈 1 → [2, 3]
  • 步骤 5: 出栈 2 → [3]
  • 步骤 6: 出栈 3 → []

这完全符合输出序列 1 , 2 , 3 1, 2, 3 1,2,3。因此, P 1 = 1 P_1 = 1 P1=1 是可能的。

场景二:假设 P 1 = 2 P_1 = 2 P1=2

如果 P 1 = 2 P_1 = 2 P1=2,栈操作如下:

  • 步骤 1: 压入 2 → [2]
  • 步骤 2: 压入 3 → [2, 3]
  • 步骤 3: 压入 1 → [2, 3, 1]

此时栈的状态是 [2, 3, 1],出栈顺序为:

  • 步骤 4: 出栈 1 → [2, 3]
  • 步骤 5: 出栈 2 → [3]
  • 步骤 6: 出栈 3 → []

这个操作顺序同样符合输出序列 1 , 2 , 3 1, 2, 3 1,2,3。因此, P 1 = 2 P_1 = 2 P1=2 也是可能的。

结论:

根据上述分析,A. 可能是2 是正确答案。


总结:

通过这两道栈相关的题目,可以更好地理解栈的工作原理及其在实际应用中的应用。在这些问题中,其重点考察了栈的“后进先出”特性,逐步推导输入序列和输出序列之间的关系。理解栈的操作顺序是解决这类问题的关键。

评论 70
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值