在数据结构中,栈(Stack)是一种非常重要的线性数据结构。栈的特点是遵循“后进先出”(LIFO,Last In, First Out)的原则。也就是说,最后压入栈的元素最先出栈。栈的应用非常广泛,常见于表达式求值、括号匹配、深度优先搜索等问题。
今天,我们将通过两个实际的栈操作题目,帮助大家更好地理解栈的工作原理,并讲解如何在具体问题中应用栈。我们将通过解析这两道题,带你一步步深入理解栈的操作。
本文需要读者具有栈的基本知识,若不清楚可参考以下文章:
实战
题目均出自王道2024考研数据结构。
题目一
若栈的输入序列是 P 1 , P 2 , … , P n P_1, P_2, \ldots, P_n P1,P2,…,Pn,输出序列是 1 , 2 , 3 , … , n 1, 2, 3, \ldots, n 1,2,3,…,n,若 P 3 = 1 P_3 = 1 P3=1,则 P 1 P_1 P1 的值?
A. 可能是2
B. 一定是2
C. 不可能是2
D. 不可能是3
解析:
题目给定了一个输入序列和一个输出序列,要求我们根据栈的操作顺序推测 P 1 P_1 P1 的值,并且给出多个选项。我们知道栈遵循“后进先出”(LIFO)的原则,即最后压入栈的元素最先出栈。根据这个原则,我们来一步步分析。
题目给定的信息:
- 输出序列必须是 1 , 2 , 3 , … , n 1, 2, 3, \ldots, n 1,2,3,…,n,即数字 1 必须最先出栈。
- P 3 = 1 P_3 = 1 P3=1,即数字 1 是第三个压入栈的元素。
栈操作的推导:
为了确保输出序列 1 , 2 , 3 , … , n 1, 2, 3, \ldots, n 1,2,3,…,n 是有效的,我们需要模拟栈的操作过程,特别是数字 1 在栈中的位置。我们可以将栈的状态通过链表形式来表示。假设每个压栈操作时栈的变化为:
- 初始栈状态为空:
[]
- 压入
P
1
P_1
P1:
[P_1]
- 压入
P
2
P_2
P2:
[P_1, P_2]
- 压入
P
3
P_3
P3 时,
P
3
=
1
P_3 = 1
P3=1:
[P_1, P_2, 1]
现在,我们分析栈的出栈过程。我们必须确保数字 1 在最先出栈,数字 2 和 3 按照顺序依次出栈。
场景一:假设 P 1 = 2 P_1 = 2 P1=2
我们尝试设置 P 1 = 2 P_1 = 2 P1=2,那么栈的操作流程如下:
- 步骤 1: 压入 2 →
[2]
- 步骤 2: 压入 3 →
[2, 3]
- 步骤 3: 压入 1 →
[2, 3, 1]
此时栈的状态是 [2, 3, 1]
。现在出栈:
- 步骤 4: 出栈 1 →
[2, 3]
,数字 1 最先出栈。 - 步骤 5: 出栈 3 →
[2]
- 步骤 6: 出栈 2 →
[]
这个过程符合输出序列 1 , 2 , 3 1, 2, 3 1,2,3,因此 P 1 = 2 P_1 = 2 P1=2 是可能的。
场景二:假设 P 1 = 3 P_1 = 3 P1=3
如果 P 1 = 3 P_1 = 3 P1=3,那么栈的操作流程如下:
- 步骤 1: 压入 3 →
[3]
- 步骤 2: 压入 2 →
[3, 2]
- 步骤 3: 压入 1 →
[3, 2, 1]
此时栈的状态是 [3, 2, 1]
。现在出栈:
- 步骤 4: 出栈 1 →
[3, 2]
- 步骤 5: 出栈 2 →
[3]
- 步骤 6: 出栈 3 →
[]
这里数字 3 最先出栈,显然与输出序列 1 , 2 , 3 1, 2, 3 1,2,3 不符合。因此 P 1 = 3 P_1 = 3 P1=3 是不可能的。
结论:
- 如果 P 1 = 2 P_1 = 2 P1=2,栈操作完全符合要求。
- 如果 P 1 = 3 P_1 = 3 P1=3,栈操作顺序无法满足要求。
因此,C. 不可能是2 是正确答案。
题目二
若栈的输入序列是 P 1 , P 2 , … , P n P_1, P_2, \ldots, P_n P1,P2,…,Pn,输出序列是 1 , 2 , 3 , … , n 1, 2, 3, \ldots, n 1,2,3,…,n,若 P 3 = 3 P_3 = 3 P3=3,则 P 1 P_1 P1 的值是?
A. 可能是2
B. 不可能是1
C. 一定是1
D. 一定是2
解析:
给定 P 3 = 3 P_3 = 3 P3=3,即数字 3 是第三个压入栈的元素。我们需要根据栈的操作顺序推测 P 1 P_1 P1 的值。我们知道输出序列应该是按顺序出栈的,其中 1 必须最先出栈。
首先我们确定一个关键点:为了确保 1 最先出栈,数字 1 必须在 3 被压入栈之前就已经被压入栈,并且在 3 被压入栈后不允许再出栈。
场景一:假设 P 1 = 1 P_1 = 1 P1=1
如果 P 1 = 1 P_1 = 1 P1=1,栈操作如下:
- 步骤 1: 压入 1 →
[1]
- 步骤 2: 压入 2 →
[1, 2]
- 步骤 3: 压入 3 →
[1, 2, 3]
此时栈的状态是 [1, 2, 3]
,出栈顺序为:
- 步骤 4: 出栈 1 →
[2, 3]
- 步骤 5: 出栈 2 →
[3]
- 步骤 6: 出栈 3 →
[]
这完全符合输出序列 1 , 2 , 3 1, 2, 3 1,2,3。因此, P 1 = 1 P_1 = 1 P1=1 是可能的。
场景二:假设 P 1 = 2 P_1 = 2 P1=2
如果 P 1 = 2 P_1 = 2 P1=2,栈操作如下:
- 步骤 1: 压入 2 →
[2]
- 步骤 2: 压入 3 →
[2, 3]
- 步骤 3: 压入 1 →
[2, 3, 1]
此时栈的状态是 [2, 3, 1]
,出栈顺序为:
- 步骤 4: 出栈 1 →
[2, 3]
- 步骤 5: 出栈 2 →
[3]
- 步骤 6: 出栈 3 →
[]
这个操作顺序同样符合输出序列 1 , 2 , 3 1, 2, 3 1,2,3。因此, P 1 = 2 P_1 = 2 P1=2 也是可能的。
结论:
根据上述分析,A. 可能是2 是正确答案。
总结:
通过这两道栈相关的题目,可以更好地理解栈的工作原理及其在实际应用中的应用。在这些问题中,其重点考察了栈的“后进先出”特性,逐步推导输入序列和输出序列之间的关系。理解栈的操作顺序是解决这类问题的关键。