前言
本来程序跑得好好的,突然快到结尾时程序被强制关闭,报错 zsh: killed xxx/bin/python

后面经查找发现是因为内存耗尽,程序强制被关闭,追其溯源,发现使用了类似这样的代码:

从一个文件夹下读取全部文件数据作为list返回,由于list太大导致内存不足
能不能通过分块或者惰性加载的思想来迭代nc_datas从而解决内存瓶颈问题?
答案是可以的
协程模型
python中的协程采用了generator实现,而generator就类似惰性加载的思想,你调用它一次它才计算一次。比如 x * x 就是generator,它代表了一个理论上无限长的 list 集合,但实际上占用的内存只有当前的值,这也与Java中的Stream是类似的
由于前面内存耗尽、程序强制被关闭时,读数据占了大概10G的内存,因此我想分3~4次读取,这样每次只会消耗2~3G的内存,不会出现内存瓶颈问题
下面给出一个协程简化模型
# 判断当前下标c在第几个段
def check(c,red_lines):
for i,red_v in enumerate(red_lin

本文介绍了如何通过Python协程和generator实现内存优化,解决在处理大量文件时的内存瓶颈问题,通过分多次读取和惰性加载策略,避免一次性加载过多数据导致的程序崩溃。实例演示了如何将10个文件分3次读取,有效降低内存消耗。
最低0.47元/天 解锁文章
2471

被折叠的 条评论
为什么被折叠?



