python使用协程解决内存瓶颈问题

本文介绍了如何通过Python协程和generator实现内存优化,解决在处理大量文件时的内存瓶颈问题,通过分多次读取和惰性加载策略,避免一次性加载过多数据导致的程序崩溃。实例演示了如何将10个文件分3次读取,有效降低内存消耗。
摘要由CSDN通过智能技术生成

前言

本来程序跑得好好的,突然快到结尾时程序被强制关闭,报错 zsh: killed  xxx/bin/python

后面经查找发现是因为内存耗尽,程序强制被关闭,追其溯源,发现使用了类似这样的代码:

从一个文件夹下读取全部文件数据作为list返回,由于list太大导致内存不足

能不能通过分块或者惰性加载的思想来迭代nc_datas从而解决内存瓶颈问题?

答案是可以的

协程模型

python中的协程采用了generator实现,而generator就类似惰性加载的思想,你调用它一次它才计算一次。比如 x * x 就是generator,它代表了一个理论上无限长的 list 集合,但实际上占用的内存只有当前的值,这也与Java中的Stream是类似的

由于前面内存耗尽、程序强制被关闭时,读数据占了大概10G的内存,因此我想分3~4次读取,这样每次只会消耗2~3G的内存,不会出现内存瓶颈问题

下面给出一个协程简化模型

# 判断当前下标c在第几个段
def check(c,red_lines):
    for i,red_v in enumerate(red_lin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值