前言
LTTB算法由冰岛大学的Sveinn在2013年提出,其对时序数据的降维拟合效果显著,且适用于海量数据处理,已被欧洲多家商业公司采纳,其降维效果如下图,灰色是高密度的原始时序数据,黑色是降维后的拟合表示

本文将先介绍PAA降维算法,再讨论LTTB降维算法,最后使用工业生产数据对两者进行实验对比,整个过程已整理为论文报告的一部分。因实验部分数据保密关系,本博客将只截取部分论文报告内容,但已足以讲清LTTB算法。(该方法具有极高的数据预处理价值,并且写报告不易,国庆肝了7天,所以为了防爬设置个门槛,需要全文的评论或私信我即可,请理解)
----- 临时插播 ---- 这就有人给我私自传到百度文库上去啦?还收费。。这种盗qie也要防爬是吧

这个沛安同学你要我都免费给了,你还上传单独收费只能说明人品和技术都太狭隘了,这又不是什么芯片技术有必要收费吗?我这是防爬你这盗qie也要防爬?亲爱的读者们,我这写的全免费的,私信或评论就

本文介绍了LTTB(Longest Time Bucket)降维算法,该算法由Sveinn在2013年提出,特别适用于时间序列数据的降维和拟合。内容包括LTTB算法的背景、与PAA算法的对比,以及工业生产数据的实验证明。文章强调了算法在处理海量数据方面的优势,并对数据预处理的价值进行了讨论。此外,作者分享了对时间序列领域研究的见解,并鼓励读者关注和探讨相关问题。
最低0.47元/天 解锁文章
1173

被折叠的 条评论
为什么被折叠?



