package com.bigdata.flink.Flink_Sink
import java.util
import java.util._
import com.bigdata.flink.Tranform_Operator.SensorReading
import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.api.common.serialization.SimpleStringSchema
import org.apache.flink.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer}
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011
import org.apache.http.HttpHost
import org.elasticsearch.client.Requests
/**
*
* 将 flink 处理过的 数据 保存到 Elastic Search
*/
object ESSinkClusterDataFromFile {
def main(args: Array[String]): Unit = {
val env = StreamExecutionEnvironment.getExecutionEnvironment
// 如果不设,默认为本机核数的并行度,即读取数据安顺序一条条读取
env.setParallelism(1)
// 1、读取数据,从文件读取
val inputStream = env.readTextFile("E:\\Project\\flinkProject\\data.txt")
// 3、转换操作
val dataStream = inputStream.map(data => {
val daraArray = data.split(",")
val sensorId = daraArray(0).trim
val timeStamp = daraArray(1).trim.toLong
val tempperture = daraArray(2).trim.toDouble
// 包装成样例类
SensorReading(sensorId, timeStamp, tempperture)
})
// 4、从文件读取数据,sink 到 ES
// ES 配置
val httpHosts = new util.ArrayList[HttpHost]()
httpHosts.add(new HttpHost("mini1", 9200))
httpHosts.add(new HttpHost("mini2", 9200))
httpHosts.add(new HttpHost("mini3", 9200))
val esSinkBuilder = new ElasticsearchSink.Builder[SensorReading](httpHosts,
new ElasticsearchSinkFunction[SensorReading] {
override def process(t: SensorReading, runtimeContext: RuntimeContext, requestIndexer: RequestIndexer): Unit = {
println("saving data " + t)
// 1. 创建一个map 包装 jsonObjet
val json = new util.HashMap[String, String]()
json.put("sensor_id", t.id)
json.put("temperature", t.tempPerture.toString)
json.put("timeStamp", t.timeStamp.toString)
// 2.创建index 索引,为 sensor
val indexRequest = Requests.indexRequest()
.index("sensor")
.`type`("readingData")
.source(json)
// 3.利用index 发送请求
requestIndexer.add(indexRequest)
println("saved successfully")
}
})
// 4、sink 到ES
dataStream.addSink(esSinkBuilder.build())
// 5 、启动流,不停止
env.execute("ESSinkClusterDataFromFile ")
}
}
从文件读取数据,保存到ElasticSearch,使用flink框架
最新推荐文章于 2023-09-22 21:56:40 发布