pytorch学习
qq_37972486
这个作者很懒,什么都没留下…
展开
-
Pytorch使用MNIST数据集实现CGAN和生成指定的数字
条件gan网络转载 2020-05-17 14:08:21 · 875 阅读 · 0 评论 -
torchnet package
torchnet package转载 2020-05-15 23:00:21 · 154 阅读 · 0 评论 -
pytorch中index_select()
**pytorch中index_select()的用法**a = torch.linspace(1, 12, steps=12).view(3, 4)print(a)b = torch.index_select(a, 0, torch.tensor([0, 2]))print(b)print(a.index_select(0, torch.tensor([0, 2])))c = torch.index_select(a, 1, torch.tensor([1, 3]))print(c)转载 2020-05-15 19:35:43 · 345 阅读 · 0 评论 -
ResNet-18 cifar-10 实战
'''ResNet-18 Image classfication for cifar-10 with PyTorch '''import torchimport torch.nn as nnimport torch.nn.functional as Fimport torchimport torch.nn as nnimport torch.optim as optimimport torchvisionimport torchvision.transforms as transfo转载 2020-05-11 22:40:56 · 343 阅读 · 0 评论 -
pytorch保存模型等相关参数,利用torch.save(),以及读取保存之后的文件
假设在某个epoch,我们要保存模型参数,优化器参数以及epoch。1. 先建立一个字典,保存三个参数:if steps % 10000 == 0: file_path = os.path.join(args.weight_dir, 'weights-{:07d}.pth.tar'.format(steps)) state =转载 2020-05-11 18:31:48 · 1094 阅读 · 0 评论 -
pytorch几个重要的学习例子
1、简单的回归2、MNIST3、创建Tensor4、索引与切片5、维度变换 expand6、broadcasting7、合并与分割concat8、数学运算9、statistics10、tensor_advanced11、BatchNorm12、nn.Module()13、Visdom1.简单的回归import numpy as np# y = wx + bdef compute_error_for_line_given_points(b, w, points): t原创 2020-05-11 12:18:50 · 739 阅读 · 1 评论 -
pytorch中squeeze()和unsqueeze()函数
一、unsqueeze()函数当unqueeze 函数中参数是为非负数数时 在对应的前边添加维度,a的shape 为(2,3例如在unqueeze(0)在0维之前添加一维shape变成(1,2,3)unsqueeze的插入方式如下squeeze 只有在维度位置的数维度维1的时候才会被压缩首先初始化一个a可以看出a的维度为(2,3)在第二维增加一个维度,使其维度变为(2,1,3)可以看出a的维度已经变为(2,1,3)了,同样如果需要在倒数第二个维度上增加一个维度,那么使用b.unsq原创 2020-05-10 22:04:54 · 655 阅读 · 1 评论 -
DCGAN鉴别器部分
pytorch怎么使用定义好的模型的一部分转载 2020-05-10 21:30:37 · 454 阅读 · 0 评论 -
pytorch中的worker如何工作的
【Q&A】pytorch中的worker如何工作的 目录QuestionAnswer参考资料Question一直很迷,在给Dataloader设置worker数量(num_worker)时,到底设置多少合适?这个worker到底怎么工作的?如果将num_worker设为0(也是默认值),就没有worker了吗?worker的使用场景:from torch.utils.data import DataLoadertrain_loader = DataLoader(datase.转载 2020-05-10 15:56:08 · 350 阅读 · 0 评论 -
Transposed convolution:pytorch ConvTranspose2d参数设置
一、卷积操作:假设cnn中某一层: 输入特征图:H*H, 卷积核:k*k, 步长stride:s, padding:p那么经过这层卷积之后特征图大小:(H-k+2*p)/ s + 1 二、Transposed convolution(逆卷积).转载 2020-05-09 16:52:42 · 581 阅读 · 0 评论 -
pytorch 学习 -LSTM
RNN的类别:循环神经网络主要应用于序列数据的处理,因输入与输出数据之间有时间上的关联性,所以在常规神经网络的基础上,加上了时间维度上的关联性,也就是有了循环神经网络。因此对于循环神经网络而言,它能够记录很长时间的历史信息,即使在某一时刻有相同的输入,但由于历史信息不同,也会得到不同的输出,这也是循环神经网络相比于常规网络的不同之处。根据输入与输出之间的对应关系,可以将循环神经网络分为以下五大...转载 2020-04-15 19:32:41 · 447 阅读 · 0 评论 -
pytorch中损失函数的细节 average.size
average.size转载 2020-04-13 20:01:56 · 862 阅读 · 0 评论 -
AE实战
AE.py#!/usr/bin/env python# coding: utf-8# In[1]:import torchfrom torch import nnclass AE(nn.Module): def __init__(self): super(AE,self).__init__() #[b,78...原创 2020-04-12 16:23:42 · 204 阅读 · 0 评论 -
VAE实战
# coding: utf-8# In[3]:VAE.pyimport torchfrom torch import nnclass VAE(nn.Module): def __init__(self): super (VAE,self).__init__() # [b, 784] => [b, ...原创 2020-04-12 16:20:48 · 320 阅读 · 0 评论 -
GAN实战
import torchfrom torch import nn,optim,autogradimport numpy as npimport visdomfrom torch.nn import functional as Ffrom matplotlib import pyplot as pltimport randomh_dim =400batchsz=512v...原创 2020-04-12 16:09:56 · 173 阅读 · 0 评论 -
pytorch .detach() .detach_() 和 .data用于切断反向传播
detach转载 2020-03-15 21:54:52 · 168 阅读 · 0 评论 -
KL Divergence KL散度
KL Divergence KL散度转载 2020-03-13 22:54:23 · 153 阅读 · 0 评论 -
pytorch 维度变换
参考网易云课堂 pytroch学习#view reshape# lost dim information import torcha=torch.rand(4,1,28,28)print(a.shape)# torch.Size([4, 1, 28, 28])print(a.view(4,28*28).shape)# torch.Size([4, 784])print(a.vie...原创 2020-03-03 01:08:00 · 735 阅读 · 0 评论 -
pytorch:索引与切片
参考网易云课堂的pytorch 学习#indexing dim 0 first import torcha=torch.rand(4,3,28,28)a[0].shape#第0张的图片的c h w#torch.Size([3, 28, 28])a[0,0].shape #第0张图片的 0通道的 h,wa[0,0,2,4]#第0张图片的 0通道 的第[2,4]的像素值a[:2,:1,...原创 2020-03-03 00:01:06 · 164 阅读 · 0 评论 -
pytorch 常用函数
pytorch 常用函数参考:网易云课堂pytorch 学习#创建tensor import from numpyimport numpy as npimport torcha=np.array([2,3.3])torch.from_numpy(a) # out:tensor([2.0000, 3.3000], dtype=torch.float64)a=np.ones([2,3]...原创 2020-03-02 23:08:52 · 155 阅读 · 0 评论 -
pytorch:tensor学习
`参考网易云课堂 :pytorch课程``#type checkimport torcha=torch.randn(2,3)a.type()#torch的默认数据类型是torch.FloatTensor torch.FloatTensortype(a)#torch.Tensorisinstance(a,torch.FloatTensor)#是不是torch.FloatTensor的实...原创 2020-03-02 21:43:11 · 161 阅读 · 0 评论 -
pytorch one_hot
Pytorch scatter_ 理解轴的含义pytorch one_hot编码def one_hot(label, depth=10): out = torch.zeros(label.size(0), depth) idx = torch.LongTensor(label).view(-1, 1) out.scatter_(dim=1, index=idx, val...转载 2020-03-01 21:03:24 · 190 阅读 · 0 评论 -
pytorch求范数函数——torch.norm
pytorch求范数函数——torch.norm转载 2020-03-01 14:39:50 · 1289 阅读 · 0 评论 -
pytorch 学习总结
torch代码解析 为什么要使用optimizer.zero_grad()转载 2020-02-26 19:40:26 · 103 阅读 · 0 评论 -
torchvision.transforms.ToTensor的用法
#torchvision.transforms.ToTensor对于一个图片img,调用ToTensor转化成张量的形式,发生的不是将图片的RGB三维信道矩阵变成tensor图片在内存中以bytes的形式存储,转化过程的步骤是:img.tobytes() 将图片转化成内存中的存储格式torch.BytesStorage.frombuffer(img.tobytes() ) 将字节以流的...转载 2020-02-26 16:18:21 · 3736 阅读 · 0 评论 -
pytorch 学习-nn.Sequential讲解
转载:nn.Sequential讲解转载 2020-02-26 16:07:31 · 1132 阅读 · 0 评论