题目:
用n个点组成的二叉树,问有大于等于h的有多少个
n<=35 , h<=n
解决:
DP 解决
dp[i][j]
表示使用i个节点,高度为j的方案有多少个。
我们知道数的结构的方案数一般都是按照左右子树的方案数去推到根节点所在树的方案数。
所以dp[i][j] = dp[k][j-1] * dp[i - k - 1][j-1]
代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 55;
int n, h;
long long dp[N][N];
int main()
{
cin >> n >> h;
for (int i = 0; i <= n; i ++ ) dp[0][i] = 1;
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
for (int k = 0; k <= i - 1; k ++ )
dp[i][j] += dp[k][j - 1] * dp[i - k - 1][j - 1];
cout << dp[n][n] - dp[n][h - 1] << endl;
return 0;
}