【JZ-68-II】二叉树的最近公共祖先(深度优先遍历、递归)

这篇博客介绍了如何在非二叉搜索树中找到两个节点的最近公共祖先,通过深度优先遍历算法实现。在无法利用节点值进行比较的情况下,递归地检查左右子节点,并根据返回值判断最近公共祖先。算法的时间复杂度为O(n),空间复杂度为O(n),适用于任意二叉树。
摘要由CSDN通过智能技术生成

题目

在这里插入图片描述

算法思路

与【JZ-68-I】的区别在于二叉树不再是二叉搜索树了,也就是说我们无法利用节点的值的大小关系来判断节点的位置关系了,可以采用 深度优先遍历

递归终止条件:

  1. 越过了叶节点:直接返回 n u l l null null
  2. r o o t root root 等于p、q:返回 r o o t root root

递推过程:

  1. 开启左子节点的递归,返回值记为 l e f t left left
  2. 开启右子节点的递归,返回值记为 r i g h t right right

返回值(情况1.可以合并到3.和4.内):

  1. l e f t left left r i g h t right right 均为空:返回 n u l l null null
  2. l e f t left left r i g h t right right 均不为空:说明p、q分别在 r o o t root root 的左右子树中, r o o t root root 就是最近的公共祖先,返回 r o o t root root
  3. l e f t left left 为空, r i g h t right right 不为空:说明p、q都不在 r o o t root root 的左子树中(可能是均在右子树中,也有可能是其中一个在右子树中),返回 r i g h t right right(此时的 r i g h t right right可能指向最近公共祖先,也有可能指向在右子树中的那一个节点);
  4. l e f t left left 不为空, r i g h t right right 为空:与 3. 同理

具体代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
        if(root == null || root == p || root == q)return root;
        TreeNode left = lowestCommonAncestor(root.left, p, q);
        TreeNode right = lowestCommonAncestor(root.right, p, q);
        if(left == null)return right;
        if(right == null)return left;
        return root;
    }
}

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n), n 为二叉树节点总数。最差情况下,需要遍历树的所有节点。
  • 空间复杂度: O ( n ) O(n) O(n),递归深度最大为 n

参考

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值