Pytorch通过保存为ONNX模型转TensorRT5

本文介绍了如何将Pytorch模型保存为ONNX格式,然后利用TensorRT5的ONNX解析器构建运行引擎,实现模型在TensorRT上的高效预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 Pytorch以ONNX方式保存模型

    def saveONNX(model, filepath):
        '''
        保存ONNX模型
        :param model: 神经网络模型
        :param filepath: 文件保存路径
        '''
        
        # 神经网络输入数据类型
        dummy_input = torch.randn(self.config.BATCH_SIZE, 1, 28, 28, device='cuda')
        torch.onnx.export(model, dummy_input, filepath, verbose=True)

2 利用TensorRT5中ONNX解析器构建Engine

    def ONNX_build_engine(onnx_file_path):
        '''
        通过加载onnx文件,构建engine
        :param onnx_file_path: onnx文件路径
        :return: engine
        '''
        # 打印日志
        G_LOGGER = trt.Logger(trt.Logger.WARNING)

        with trt.Builder(G_LOGGER) as builder, builder.create_network() as network, trt.OnnxParser(network, G_LOGGER) as parser:
            builder.max_batch_size = 100
            builder.max_work
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值