Yarn

Yarn

一、Yarn概述
  Apache Hadoop YARN (Yet Another Resource Negotiator,另一种资源协调者)是一种新的Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。
  YARN的基本思想是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建一个全局的ResourceManager(RM)和若干个针对应用程序的ApplicationMaster(AM)。这里的应用程序是指传统的MapReduce作业。
  YARN 分层结构的本质是 ResourceManager。这个实体控制整个集群并管理应用程序向基础计算资源的分配。ResourceManager 将各个资源部分(计算、内存、带宽等)精心安排给基础 NodeManager(YARN 的每节点代理)。
  ResourceManager 还与 ApplicationMaster 一起分配资源,与NodeManager 一起启动和监视它们的基础应用程序。在此上下文中,ApplicationMaster 承担了以前的TaskTracker 的一些角色,ResourceManager 承担了 JobTracker 的角色。
  ApplicationMaster 管理一个在 YARN 内运行的应用程序的每个实例。ApplicationMaster 负责协调来自 ResourceManager 的资源,并通过 NodeManager 监视容器的执行和资源使用(CPU、内存等的资源分配)。
二、Yarn的优点
  1.对于资源的表示以内存为单位 ( 在目前版本的 Yarn 中,没有考虑 cpu 的占用 ),比之前以剩余 slot 数目更合理。
  2.老的框架中,JobTracker 一个很大的负担就是监控 job 下的 tasks 的运行状况,现在,这个部分就扔给 ApplicationMaster 做了,而 ResourceManager 中有一个模块叫做 ApplicationsMasters( 注意不是 ApplicationMaster),它是监测 ApplicationMaster 的运行状况,如果出问题,会将其在其他机器上重启。
三、Yarn体系架构图
在这里插入图片描述
  执行顺序:1、MapReduce程序启动job -> 2、向resourceManager注册获取applicationId -> 3、复制任务所需要的资源 -> 4、向resourceManager提交应用程序 -> 5:a在nodeManager上启动容器 -> 5:b启动MRAppMaster -> 6、初始化job -> 7、检索输入的切块 -> 8、nodeManager向resourceManager申请分配资源 -> 9:a MRAppMaster在新的nodeManager上启动容器 -> 9:b 新的node manager 启动task JVM -> 10、YarnChild去检索job所需要的资源 -> 11、启动mapTask或者reduceTask。
四、YARN的核心思想
  将JobTracker和TaskTacker进行分离,它由下面几大构成组件:
   a. 一个全局的资源管理器 ResourceManager
   b.ResourceManager的每个节点代理 NodeManager
   c. 表示每个应用的 ApplicationMaster
   d. 每一个ApplicationMaster拥有多个Container在NodeManager上运行
五、YARN的主要架构
  1、ResourceManager(RM):
   RM是一个全局的资源管理器,负责整个系统的资源管理和分配。它主要由两个组件构成:调度器(Scheduler)和应用程序管理器(Applications Manager,ASM)。
   调度器 调度器根据容量、队列等限制条件(如每个队列分配一定的资源,最多执行一定数量的作业等),将系统中的资源分配给各个正在运行的应用程序。需要注意的是,该调度器是一个“纯调度器”,它不再从事任何与具体应用程序相关的工作,比如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由应用程序相关的ApplicationMaster完成。调度器仅根据各个应用程序的资源需求进行资源分配,而资源分配单位用一个抽象概念“资源容器”(Resource Container,简称Container)表示,Container是一个动态资源分配单位,它将内存、CPU、磁盘、网络等资源封装在一起,从而限定每个任务使用的资源量。此外,该调度器是一个可插拔的组件,用户可根据自己的需要设计新的调度器,YARN提供了多种直接可用的调度器,比如Fair Scheduler和Capacity Scheduler等。
   应用程序管理器应用程序管理器负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动ApplicationMaster、监控ApplicationMaster运行状态并在失败时重新启动它等。
 2、ApplicationMaster(AM):
 用户提交的每个应用程序均包含一个AM,主要功能包括:
   (1)与RM调度器协商以获取资源(用Container表示);
   (2)将得到的任务进一步分配给内部的任务(资源的二次分配);
   (3)与NM通信以启动/停止任务;
   (4)监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务。
   (5)当前YARN自带了两个AM实现,一个是用于演示AM编写方法的实例程序distributedshell,它可以申请一定数目的Container以并行运行一个Shell命令或者Shell脚本;另一个是运行MapReduce应用程序的AM—MRAppMaster。
   注:RM只负责监控AM,在AM运行失败时候启动它,RM并不负责AM内部任务的容错,这由AM来完成。
  3、NodeManager(NM):
   NM是每个节点上的资源和任务管理器,一方面,它会定时地向RM汇报本节点上的资源使用情况和各个Container的运行状态;另一方面,它接收并处理来自AM的Container启动/停止等各种请求。
  4、Container:
   Container是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等,当AM向RM申请资源时,RM为AM返回的资源便是用Container表示。YARN会为每个任务分配一个Container,且该任务只能使用该Container中描述的资源。
 注:1. Container不同于MRv1中的slot,它是一个动态资源划分单位,是根据应用程序的需求动态生成的。
   2. 现在YARN仅支持CPU和内存两种资源,且使用了轻量级资源隔离机制Cgroups进行资源隔离。
   YARN的资源管理和执行框架都是按主/从范例实现的——Slave —节点管理器(NM)运行、监控每个节点,并向集群的Master—资源管理器(RM)报告资源的可用性状态,资源管理器最终为系统里所有应用分配资源。
   特定应用的执行由ApplicationMaster控制,ApplicationMaster负责将一个应用分割成多个任务,并和资源管理器协调执行所需的资源,资源一旦分配好,ApplicationMaster就和节点管理器一起安排、执行、监控独立的应用任务。
   需要说明的是, YARN不同服务组件的通信方式采用了事件驱动的异步并发机制,这样可以简化系统的设计。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值