验证模型的方法

Validating Models After Estimation - MATLAB & Simulink - MathWorks 中国
您可以使用以下方法来验证模型:

  • 将模拟或预测模型输出与测量输出进行比较。请参阅模拟和预测已识别模型输出。

Simulate and Predict Identified Model Output.        

要在 Simulink® 环境中仿真已识别模型,请参阅在 Simulink 中仿真已识别模型。

 Simulate Identified Model in Simulink.

  • 分析残差与输入的自相关和互相关。请参阅什么是残差分析?What Is Residual Analysis?.
  • 分析模型响应。有关详细信息,请参阅以下内容:
  1.         脉冲和阶跃响应图   Impulse and Step Response Plots- MATLAB & Simulink- MathWorks 中国
  2.         模型验证的频率响应图 Frequency Response Plots for Model Validation- MATLAB & Simulink- MathWorks 中国

        有关噪声模型响应的信息,请参阅噪声谱图。Noise Spectrum Plots- MATLAB & Simulink- MathWorks 中国

  • 绘制线性参数模型的极点和零点。有关详细信息,请参阅极点图和零点图。Pole and Zero Plots- MATLAB & Simulink- MathWorks 中国
  • 将非参数模型(例如脉冲响应、阶跃响应和频率响应模型)的响应与参数模型(例如线性多项式模型、状态空间模型和非线性参数模型)的响应进行比较。

note

当系统中存在反馈时不要使用此比较,因为反馈会使非参数模型不可靠。要测试系统中是否存在反馈,请对数据使用建议命令。

  • 使用 Akaike 信息准则或 Akaike 最终预测误差比较模型。有关详细信息,请参阅 aicfpe参考页面。
  • 绘制 Hammerstein-Wiener 和非线性 ARX 模型的线性和非线性块。

在支持的图上显示置信区间有助于您评估模型参数的不确定性。有关更多信息,请参阅计算模型不确定性

模型验证数据

对于将模型响应与测量响应进行比较并执行残差分析的图,您指定两种类型的数据集:一种用于估计模型(估计数据),另一种用于验证模型(验证数据)。尽管您可以指定相同的数据集用于估计和验证模型,但您可能会过度拟合数据。当您使用独立数据集验证模型时,此过程称为交叉验证。

验证数据的频率内容应与估计数据相同。如果您去除了估计数据的趋势,则必须从验证数据中删除相同的趋势。有关去趋势的更多信息,请参阅处理数据中的偏移和趋势。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白日梦想家_胖七七

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值