Validating Models After Estimation - MATLAB & Simulink - MathWorks 中国
您可以使用以下方法来验证模型:
- 将模拟或预测模型输出与测量输出进行比较。请参阅模拟和预测已识别模型输出。
Simulate and Predict Identified Model Output.
要在 Simulink® 环境中仿真已识别模型,请参阅在 Simulink 中仿真已识别模型。
Simulate Identified Model in Simulink.
- 分析残差与输入的自相关和互相关。请参阅什么是残差分析?What Is Residual Analysis?.
- 分析模型响应。有关详细信息,请参阅以下内容:
- 脉冲和阶跃响应图 Impulse and Step Response Plots- MATLAB & Simulink- MathWorks 中国
-
模型验证的频率响应图 Frequency Response Plots for Model Validation- MATLAB & Simulink- MathWorks 中国
有关噪声模型响应的信息,请参阅噪声谱图。Noise Spectrum Plots- MATLAB & Simulink- MathWorks 中国
- 绘制线性参数模型的极点和零点。有关详细信息,请参阅极点图和零点图。Pole and Zero Plots- MATLAB & Simulink- MathWorks 中国
- 将非参数模型(例如脉冲响应、阶跃响应和频率响应模型)的响应与参数模型(例如线性多项式模型、状态空间模型和非线性参数模型)的响应进行比较。
note
当系统中存在反馈时不要使用此比较,因为反馈会使非参数模型不可靠。要测试系统中是否存在反馈,请对数据使用建议命令。
- 使用 Akaike 信息准则或 Akaike 最终预测误差比较模型。有关详细信息,请参阅 aic 和 fpe参考页面。
- 绘制 Hammerstein-Wiener 和非线性 ARX 模型的线性和非线性块。
在支持的图上显示置信区间有助于您评估模型参数的不确定性。有关更多信息,请参阅计算模型不确定性。
模型验证数据
对于将模型响应与测量响应进行比较并执行残差分析的图,您指定两种类型的数据集:一种用于估计模型(估计数据),另一种用于验证模型(验证数据)。尽管您可以指定相同的数据集用于估计和验证模型,但您可能会过度拟合数据。当您使用独立数据集验证模型时,此过程称为交叉验证。
验证数据的频率内容应与估计数据相同。如果您去除了估计数据的趋势,则必须从验证数据中删除相同的趋势。有关去趋势的更多信息,请参阅处理数据中的偏移和趋势。