matlab
文章平均质量分 69
白日梦想家_胖七七
这个作者很懒,什么都没留下…
展开
-
MATLAB-自由参数化状态空间模型的估计
状态空间矩阵A、B、C、D和K的默认参数化是免费的;也就是说,矩阵中的任何元素都可以通过估计例程进行调整。由于A、B和C的参数化是自由的,因此会自动选择状态空间实现的基础,以提供条件良好的计算。其中data是您的估计数据。ssest为自动选择的1到10之间的顺序估计连续时间状态空间模型。ssregest估计离散时间模型。迭代算法ssest由子空间方法n4sid初始化。假设您不了解离散时间状态空间模型的内部结构。它自动估计1:10范围内最佳顺序的离散时间模型。要估计干扰模型K,必须使用时域数据。原创 2022-09-30 09:04:18 · 902 阅读 · 0 评论 -
MATLAB-在命令行估计状态空间模型
在这种方法中,您可以指定模型顺序,也可以指定配置状态空间矩阵总体结构的其他模型结构属性。您使用数据和模型顺序作为主要输入参数调用、或,并使用名称-值对指定任何其他属性,例如模型采样时间、存在馈通、没有噪声分量等。您不能直接使用A、B、C、D、K和X0矩阵的系数。原创 2022-09-30 08:17:53 · 1725 阅读 · 0 评论 -
MATLAB 命令行状态空间模型辨识
结构化辨识中不能指定系统矩阵中各元素之间的关系,即各元素之间是独立的,对于元素之间有依赖性的结构化辨识属于复杂灰箱辨识,可尝试使用grayest估计器。首先创建一个包含系统矩阵初始值的idss模型结构,在此结构中,使用structure属性来指定参数约束。可以使用ssest或n4sid函数以数据和模型阶次作为主要函数参数来进行辨识。默认地,n4sid以数据的采样周期辨识离散时间模型,如果想辨识连续时间模型,可用如下命令。n4sid辨识离散模型。如果使用的是连续时间频域数据,则不能辨识离散模型。原创 2022-09-29 19:36:07 · 1126 阅读 · 0 评论 -
模拟和预测识别的模型输出
matlab模拟和预测识别的输出原创 2022-09-26 16:42:42 · 1290 阅读 · 0 评论 -
验证模型的方法
估计后验证模型的方式原创 2022-09-26 16:14:27 · 2129 阅读 · 0 评论 -
模型验证基础
MATLAB模型验证基础原创 2022-09-26 16:02:17 · 372 阅读 · 0 评论 -
模型验证-MATLAB
MATLAB系统辨识工具箱模型验证原创 2022-09-26 15:57:39 · 602 阅读 · 0 评论 -
在命令行估计传递函数模型
采用MATLAB命令行进行传递函数估计原创 2022-09-26 15:55:16 · 827 阅读 · 0 评论 -
在系统识别 App 中估计传递函数模型
用系统辨识箱进行传递函数估计原创 2022-09-20 20:51:15 · 484 阅读 · 0 评论 -
什么是传递函数模型?
什么是传递函数模型原创 2022-09-20 20:22:48 · 2448 阅读 · 0 评论 -
使用系统识别应用程序识别低阶传递函数(过程模型)
使用系统识别应用程序识别低阶传递函数(过程模型)原创 2022-09-20 16:18:26 · 2310 阅读 · 0 评论 -
MATLAB-使用系统识别应用程序识别非线性黑盒模型
MATLAB-使用系统识别应用程序识别非线性黑盒模型原创 2022-09-15 19:41:22 · 4929 阅读 · 1 评论 -
MATLAB系统辨识工具箱-System Identification Toolbox
该工具箱提供 MATLAB® 函数、Simulink® 模块和一个应用程序,用于根据测量的输入输出数据构建动态系统的数学模型。它使用户可以创建和使用不容易从第一原理或规范建模的动态系统模型。用户可以使用时域和频域输入输出数据来识别连续时间和离散时间传递函数、过程模型和状态空间模型。该工具箱还提供嵌入式在线参数估计算法。原创 2022-09-15 11:07:26 · 4393 阅读 · 5 评论 -
matlab进行多输入多输出系统辨识
工具:matlab2021a步骤:鼠标选择需要导入的数据, 也可以默认全部导入,点击菜单栏导入。 在工作区看到矩阵导入成功(共导入4个矩阵)(2)对输入矩阵进行处理这里w矩阵中的4列为输入,s矩阵中的4列为输出。若直接将s和w作为输入输出矩阵进行系统辨识,会报错矩阵格式不对,需要进行一个简单的转换。(猜测可能是行列向量格式不对) 2.系统识别 (1)打开系统识别工具箱在命令行输入ident。(ident这种命令已经落后,现在使用syetemIdentification来代替)该命令会弹出如下窗口(原创 2022-07-13 18:40:47 · 8403 阅读 · 16 评论