《一种新的用于PID整定的通用2型模糊预测方案》
摘要
PID控制器在各种工业应用中被广泛使用。但是,在许多有噪音的问题中,需要强有力的方法来优化PID参数。在本文中,介绍了一种通过模型预测控制和广义 2 型模糊逻辑系统调整比例-积分-微分参数的新方法。所提出的模糊系统的规则是在线调整,并根据模糊模型调整PID参数,从而使成本函数达到最小。所设计的控制器被应用于连续搅拌罐反应器,并与其他传统方法进行了性能比较。其主要优点是通过在线建模和优化提高了精度,并在传统的比例-积分-衍生控制器中加入了预测方案。
关键词
模糊系统;机器学习;模型预测控制;PID控制器;连续搅拌罐反应器;自整定
1.介绍
比例-积分-导数(PID)控制器是普遍的控制器之一。由于其简单的结构和可接受的性能而被广泛使用。PID有 三种控制模式:比例、积分和导数模式。比例控制模式 在大多数情况下,是控制器的驱动力。这种模式根据误差水平改变控制器的输出。如果误差大,控制作用也大。如果控制器的增益被设置为一个非常高的值,控制回路将开始振荡,变得不稳定。变得不稳定。另一方面,如果增益太低,对扰动或设定点的变化的反应将无法实现。设定点的变化将不够有效。 比例增益的调整也会影响到积分和导数模式。这就是为什么这个参数也被称为控制增益。当有误差时,积分控制模式会持续增加或减少控制器的输出,将误差减少到零。如果误差较大,积分模式会迅速增加或减少控制器的输出,如果误差较小,变化会比较缓慢。积分模式的运行速度是用积分增益设置的。一个小的增益会导致缓慢的积分操作,而一个大的增益会导致快速的积分操作。如果积分增益太小,控制器会非常慢,如果太大,控制回路会出现波动和不稳定。PID控制器的第三个控制模式是导数模式。导数控制很少用于过程控制,但它更常用于运动控制。这种类型的控制器对过程控制中的测量噪声非常敏感,使用试验和错误进行调整更加困难。然而,使用导数模式会稍微增加响应速度[1,2]。因此,开发整定算法对于提高性能是至关重要的。
模型预测控制(MPC)是实际系统中最先进的控制模型之一。 因为,在控制设计中可以考虑主要控制限制和其他状态退缩。 但是,但是实施起来比较困难,很多工程师并不熟悉。 为了解决这个问题,提出了一种以两层层次结构实现的 MPC 和 PID 控制器的新型组合方案。 MPC 的性能在很大程度上取决于模型的准确性。 然而,在许多应用中,该模型在实际条件下不可用或不可靠。 通常,数学模型会受到各种因素的干扰,这个问题会破坏 MPC 的性能。 我们提出了一种在线优化的 2 型模糊模型。 所提出的识别方案是逐样本更新的,保证了模型的准确性。此外,在线整定模型可以处理不可预测的动态扰动。
主要的挑战和问题总结如下:
- PID是一个简单而有效的控制器,但在许多应用中,收益应该被调整。未调整的参数会导致不期望的性能和/或不稳定。
- 大多数存在的整定方法,如进化方法,都会带来很高的 计算成本。
- 预测方案在许多应用中提高了控制精度,但它的实现比PID更难。
- MPC的结果是良好的性能,但它的准确性在很大程度上取决于 模型。
2. 文献回顾
最近,计算智能被广泛用于优化问题中[3-5]。通过神经网络(NN)、FLS和进化优化技术来调整PID 最近已经被研究。例如,在[6]中,卡尔曼滤波器被开发出来,用于优化联合机器人操纵器控制中的PID。在[7]中,通过使用Matlab工具箱估计模型,然后调整PID的参数,并对机器人应用进行评估。在[8]中开发了和谐搜索技术来确定最佳PID。在[9]中建议采用梯度下降法进行调整,并对收敛速度进行了分析。在[10]中,NN被用来确定PID的增益,并开发了基于Smith预测器的反向传播方案来训练NN。在[11]中,学习了一个NN来调整PID增益,并研究了非线性的影响。在[12]中,使用NN和FLS,计算PID的增益,结果表明,建议的方法比其他模型具有更少的稳定时间。在[13]中,为不断暴露在参数变化和外部干扰下的四旋翼飞机引入了一个稳健的PID。在[2]中,为了调整PID的参数,建议使用深度学习NN,结果表明,调整控制器的尝试次数减少了,而且学习所需的数据也更少。在[14]中,为了对有未知干扰的水下车辆进行远程控制操作,设计了一个基于NN的自整定PID控制器来跟踪路线,结果表明,与传统的PID相比,所提出的方法以较少的能量显示出更好的性能。在[15]中,一个PID控制器被NN优化并被应用于氧气控制系统。
另一类PID调节方法是基于进化的算法。例如,[16]中开发了用于PID调节的重量型甲虫天线方法,并对其性能进行了评估。遗传算法在[17]中被应用于调整PID增益,优化后的PID被用于温度控制问题。在[18]中研究了各种基于蜂群的调整方法,并通过结合细菌觅食和粒子群优化(PSO)方法提出了一个新方案。在[19]中,通过使用混沌系统改善了PSO的性能,并将优化的PID应用于电压控制问题。在[20]中提出了多目标的PSO,用于优化航空器的PID控制器。[21]分析了Chien-Hrones-Reswick方法,并将其应用于葡萄糖调节问题。
连续搅拌罐反应器(CSTR)是工业中用来进行一些化学活动和生产产品的单元之一。随着系统操作水平的变化,CSTR表现出非线性行为。为了更好地控制CSTR,已经设计了一些基于PID的方法。例如,在[22]中,考虑到两个输入干扰,提出了一个基于粒子群优化(PSO)的PID。在[23]中,设计了一个基于PID的模糊控制器来控制CSTR的温度。在这个控制器中,增益是由一个自适应稳定块控制和决定的。通过比较结果表明,基于FLS的PID在跟踪方面比传统的PID有更好的性能。在[24]中,动态更新的PID被建议用于控制可变参数下的CSTR单元。在[25]中提出了灰狼优化方案用于PID整定,结果表明,所提出的整定方案比遗传算法和粒子群算法具有更好的控制精度。
预测控制器是应对系统限制和改善跟踪性能的有趣方法之一。然而,这种技术很少被用于提高PID的精度。例如,在[26]中,通过使用FLS对PID进行优化,并使用预测控制器来提高性能。在[27]中,开发了用于生态驾驶控制的MPC,并与PID进行了比较。在[28]中,小波NN被用来构建一个PID的预测方案。在[29]中开发了PSO算法,以设计一个预测性PID。Hägglund的控制器[30]是为二阶过程开发的,它被称为预测性PID,并研究了死区时间的影响。在[31]中,得到了一个电力系统输出的预测序列,然后设计了一个PID。在[32]中,使用了细菌觅食算法来确定PID的参数,并与预测控制器并行。在上述大多数论文中,所设计的预测控制器不能处理高噪声的非线性条件,而且所设计的控制器也只能应用于特殊的案例研究系统。此外,还使用了一些计算成本较高的优化算法,但这些算法并不适合于高速的实际工厂。
主要贡献如下:
- 基于流行的PID和MPC方法的良好特性,提出了一个简单实用的控制器。
- 建议采用2型模糊方法进行在线建模,以提高MPC性能。
- 提出了一个在线优化方案来处理在线未预测的干扰。
- 通过几次模拟显示了更好的性能。
3.模糊系统的识别
本节说明了用于在线建模的广义2型模糊逻辑系统(GT2-FLS)。所提出的控制系统的总体方案如图1所示。如图1所示,系统模型由提出的GT2-FLS在线识别。GT2-FLS的结构如图2所示,详细说明如下。
(1) GT2-FLS的输入是以前采样时间的控制信号和系统输出。
(2) 所提出的隶属函数(MF)如图3所示。对于切片级别,我们有:
(3)规则触发被写成:
(4)输出可表示成:
规则参数由以下适应定律倾斜:
4.预测控制
预测模型是一种基于模型的控制器,对不同的模型有相同的设计,但其性能根据系统的输出模型而变化。这种模型可以考虑到系统的局限性,相当适用于复杂系统。广义预测控制(GPC)和非线性模型预测控制(NMPC)是这种控制器中使用最广泛的类型。预测控制器可以设计成多输入、多输出(MIMO),也可以组合起来,但一般都是单独考虑。考虑到U(K)为控制器输出,Y(K)为系统输出,Ys(K)为K时刻的最佳系统输出,我们可以定义公式(10)。另外,P可以被认为是预测水平线,M是控制水平线。
通过最小化以下目标函数,我们可以得到向量u,用来获得系统的期望值。在这种情况下,是控制器输出的权重,ˆy是系统预测值。
通过预测系统到k+p时刻的状态,我们可以只给系统提供第一个状态,而不是使用U向量,然后在以后的时间里用新的系统规范重新计算信息。通过这种方式,我们可以考虑输入干扰和嵌入中的错误。
GPC 控制器
使用函数转换模型,这个控制器被设计出来,可以在不稳定的系统上运行。与其他方法相比,它还需要更少的系统参数来为这个控制器建模。方程(12)可以考虑用于线性系统
(12)中的表达式e(k),与干扰信号有关,可以确定地选择,也可以随机地选择。A和B也是表达式的多项式。在这个公式中,C也被认为是随机干扰,也可以被认为是白噪声的一种情况。通过最小化(11)的目标函数和使用(12)所示的线性模型,系统可以被预测到时刻k+p。另外,对于非线性系统和那些在任何时候都是可变的系统建模,我们可以用线性模型估计任何时候的系统。在这种方法中,在变量A和B不断变化的情况下,我们可以对系统的行为进行良好的建模。这个模型是一个GPC控制器,可以作为一个自适应控制器使用。
5.通过预测控制获取 PID 参数
PID 控制器通常是连续的,其整体结构由方程(13)描述。
离散PID控制的一般结构也可以描述为方程(14)。 在这种关系中,r2、r1、r0 是控制参数,S 也决定了响应速度。
方程(15)也表示在时刻k,系统输出值和期望值之间的误差。通过计算方程(14),根据方程(16)得到控制的输出。利用这个关系,可以得到控制器在时刻k的输出。我们还考虑了参数y(k)来考虑系统输入和输出之间的延迟。
如果我们把控制器在时刻k的输出视为UGPC(k),我们可以考虑 一个目标函数,如方程(17)。
在上式中,Li是最大值,li是系统在k+p时刻可以考虑的最小输入值。同时,UGPC可以通过最小化方程式(11)得到。uPID的值也是根据方程(18)计算的。在这个方程中,我们可以使用预测值而不是系统输出值。
6. 观测控制器
对于观测控制器,我们使用GPC。具有固定参数的PID控制器可以很好地控制许多化学过程,因为其速度较低。而如果系统发生变化或系统输入有干扰,最好不要改变PID控制器的参数,通过适当改变系统来控制。鉴于以上情况,我们需要使用观察者控制器来观察PID控制器的正常运行情况,如果PID控制器没有正常工作,使用方程(16),用新的参数,控制器又恢复到正常的PID。对于观测器控制器,我们使用GPC控制器。通过这种设计,除了大大减少计算量外,PID控制器的参数只有在必要时才能改变。我们也不再需要在任何时候应用预测策略。
7.CSTR装置的温度控制
7.1 控制性能
通过考虑CSTR(见图4),并假设反应器的物理特性及其体积是恒定的,其组成是完整的,我们可以根据公式(19)-(21)对反应器进行建模。
公式(19)-(21)中使用的参数如表1所示。
7.2 CSTR温度控制
使用一个以GPC控制器为控制器的PID控制器,我们控制CSTR单元的温度。同时,通过最小化误差函数,可以得到PID控制器的参数,具体如下:
该系统可以使用PID控制器进行控制,其参数由GPC控制器决定。在这种方法中,GPC控制器可以根据方程(23)使用误差平方最小化方法提供一个线性模型,用一个自适应的遗忘因子来定义系统。
根据得到的模型实施GPC控制器,并确定PID控制器的参数,预测范围、控制范围和控制器输出的权重的P、M和l的值分别如下。同时,N的值等于4。
公式(25)表示控制器输出的允许范围。另外,PID 控制器的参数修正指数被设定为1%。
8.仿真结果
为了评估本文提出的方法的性能,我们将其与其他现有的方法如传统PID和MPC自整定PID进行了比较。在仿真结果中,输出数字的振荡越小,表明该方法的性能越好。图5显示了这种比较的结果。通过放大该图的一部分,可以得到图6,可以看到所提出的自整定PID方法的性能比其他两种方法的波动要小。所以很明显,我们提出的方法比其他两种方法表现得更好。温度变化是评价所提方法的性能应考虑的条件之一。如图7所示,对系统施加温度变化,可以看出,在t = 50 s时从360 k减少到350 k,然后在t = 150 s时从350 k增加到360 k。图8,控制信号与图7有关,控制信号显示了上述三种方法。通过放大,得到图9,可以看出,MPC自调PID比传统PID好得多,但所提出的自整定PID方法,比两种方法都好得多。
水箱参数会因各种原因而改变,如温度升高,其方程会被完全打乱。考虑到油箱参数的20%变化,我们评估了用于控制系统的三种方法的性能,结果如图10所示。通过放大图10的一部分,得到图11,可以看出,GT2-FLS方法在上述条件下控制系统的性能比其他两种方法好得多。换句话说,图10和图11清楚地表明了我们的方法比其他方法的优越性。根据模拟得到的结果,我们发现FLS方法的变化最小,比其他两种方法有明显的优势。
图5-11显示,设计的PID控制器具有更好的调节性能。我们看到,所提出的PID的过冲量明显少于其他PID。同时,沉降时间也比其他PID好得多。应该注意的是,所提出的PID使用了基于GT2-FLSs的强大工具来调整增益,这在嘈杂的环境中更适用。同时,提出的预测方案也提高了准确性。此外,在线优化技术确保了对干扰有更好的稳定性。
9.结论
PID控制器在工业应用中被广泛使用。PID的增益 通常以离线方式进行调整。换句话说,PID增益的调整是基于工厂的信息,如数学模型、输入输出数据集和传递函数,然后将其应用于系统。通过一个小的干扰,增益通常会超出期望的范围,增益应该被重新调整。为了更好地进行自动调整,本文提出了一种更好的自整定方案。本文提出了一种使用广义2型FLS和MPC方案调整PID控制器参数的新方法,并将其用于控制CSTR单元。所提出的PID具有预测特性,它是基于在线优化的GT2-FLS模型的在线更新。广义的2型FLS在噪声和实际应用中具有更好的效率。根据模拟结果,所提出的自整定PID方法明显优于传统PID和其他类似方法。所提出的方案所克服的主要困难是: (1)消除了控制器对工厂数学模型的依赖性;(2)通过建议的GT2-FLS建模提高了性能;(3)在线优化方案提高了对未预测干扰的鲁棒性;(4)在传统PID中加入了预测方案。