《工业系统中PID控制器在线优化调整的神经-模糊模型在采矿业的应用》2020
摘要
本文开发了一个用于优化和在线调整PID控制器的模型,并评估了其性能。所提出的模型是基于计算智能的方法,可用于工业工厂的运行过程中。建议的调谐模型被称为PID-神经-模糊模型,这是一种基于结构化人工神经网络和模糊规则的表述。该神经网络用于对PID控制器的增益进行优化调整,以确保系统所需的操作点,从而减少适应时间和稳态误差。模糊系统被纳入实时增益调度方案,以补偿工厂参数的可能变化。所提出的模型的性能是根据其处理过程中的不确定性和干扰的能力来评估的。该模型的效率通过在采矿业两个工业过程的五个工厂中进行模拟调查:1)汽车翻斗车的固体散装卸载过程;2)斗轮取料机的固体散装恢复过程。总之,所提出的模型的主要优点是它在操作过程中对工厂参数变化的适应性。
关键词
人工神经网络(NN),计算智能 (CI), 模糊系统, 在线整定, 比例、导数 和积分(PID)控制器,稳态误差。
1.介绍
比例、导数和积分(PID)控制器由于其简单的结构、稳健的性质和容易实现,通常被用于控制工业系统[1], [2]。此外,它们有几个重要的功能,如通过积分作用减少稳态误差的能力,以及通过导数作用进行预测的可能性[3]。后者的作用也有助于提高瞬态性能和稳定性。
一个好的控制器还应该有能自动适应实际过程动态的参数[24], [25]。根据[26],PID控制器可以分为两大类--固定增益控制器和自适应控制器。固定增益控制器很简单,但不一定能有效地控制具有变化参数的系统,这可能需要经常进行在线重调。Ziegler-Nichols调谐方法是这一类别中最流行的例子[23]。相比之下,自适应控制器的参数不断调整以适应工厂参数的变化。
最近,模糊自适应控制和神经网络(NN)控制受到了极大的关注。在[10]和[11]中取得了一些重要的成果,对非线性特性的自适应反步控制设计也进行了广泛的研究。在[12]-[15]中,作者提出了非线性多输入多输出(MIMO)系统的反步控制设计的自适应方法[17]。在[18]中,作者提出了一种用于实时实施的模糊PID控制器的增益调整方法,其中工厂的动态被线性模型局部近似,参数被递归更新。PID-神经-模糊模型,与上述论文中提出的模型相比,除了它们各自的作者提出的优点,如实现控制目标的速度和保持在项目规格内达到的轨迹和鲁棒性,还具有通过遵循设计者施加的指定参数实现控制目标的最佳优势--在通过模糊规则进行在线自我调整的意义上具有适应性,此外,在抵抗其参数恢复中遭受的蛮横扰动方面具有鲁棒性。
与本文提出的方法有关的方法可以从会议记录和期刊的论文中得到验证。我们注意到,期刊论文主要侧重于方法的发展,而会议论文则介绍了它们在当代社会各个部门的应用,强调了它们在研究与发展(R&D)方面的相关性。这些方法的应用得到了强调,因为大家都知道每个工厂都有其工作方式的特点。这样一来,专家知识就可以用模糊算法来表示或建模。
为了给我们的研究提供背景,我们提出并描述了前一段中所引用的论文内容。本文旨在开发一个模型,在工厂参数变化的情况下,利用结构化人工神经网络(S-ANN)和模糊规则对PID控制器的收益进行在线调整,实现PID控制器的最佳调整。这个模型被称为PID-神经-模糊,并被应用于采矿业的以下两个工业过程的五个工厂:1)用汽车翻斗车(CD)排放散装固体的过程;2)用斗井取料机(BWR)恢复散装固体的过程。采矿业的工厂非常复杂,高性能控制器的使用并不普遍。PID-neuro-fuzzy模型是这些应用的一个创新建议,为考虑不同现实方面的问题提供了解决方案,如跟随参考输入的能力、干扰排斥、参数不确定性和适应性。
PID-神经-模糊模型在采矿业工业过程中的应用是由于这些过程是自动化的,并在可编程逻辑控制器(PLC)中实现,这些控制器的结构中已经包含了PID控制器编程模块和模糊编程[40]。此外,S-ANN表现出高性能和相对低的计算成本。因此,在实际工厂中实施拟议的模型是可行的。这种调整模型是基于工厂信息管理系统(PIMS)在运行过程中收集的实际工厂数据[39]。PIMS是一种软件,其中的传感器被登记到实时发生的事件记录中[44]。
本文通过大量的计算模拟证明了PID-神经-模糊模型的性能评估和有效性。仿真结果表明,与传统的整定方法相比,如用第二种Ziegler-Nichols方法整定的PID控制器和Zhao和Tomizuka在 "PID控制器的模糊增益调度 "中提出的PID-模糊控制器[26],计算智能(CI)方法在被评估的植物中提供了更好的性能,包括优化、稳态误差稳定性、干扰抑制和适应性。
本文的贡献涉及通过结合 CI(S-ANN 和模糊逻辑)技术和传播矩阵的组合来开发 PID 控制器的优化和在线调整算法。 该矩阵是从控制器增益向量与所研究对象传递函数的分子系数之间的内积运算中获得的,能够在需要低计算成本的同时实现工业动态系统的高效控制。 此外,在这种情况下,它有助于控制策略和通过 S-ANN 算法解决问题。
此外,本文与应用环境相关,因为所提出的模型将创新操作复杂性高的工业流程,例如采矿流程。
本文的其余部分安排如下。 在第二节中,描述了操作过程的工厂。 在第 III 节中,介绍了 PID 神经模糊模型的数学公式。 第四节描述了评估控制器模型的设计。 在第五节中,显示了评估所提出模型性能的实验结果,最后,第五节总结了本文。
2.工厂描述
有必要使用 BWR 的 CD 给料机和斗轮 (BW) 的驱动电机的电流强度 (I) 的参考数据来估计工厂模型,并将它们与秤测量的负载流量相关联 . 因此,生成了估计模型[44]。 状态空间模型是根据工厂的真实数据设计的,使用子空间方法(最小二乘法)和子空间状态空间系统识别(N4SID)[42],[43] 的搜索算法数值算法。 从这些模型中,获得了工厂的传递函数。 下面简要介绍 CD 和 BWR。
A.CD的操作过程
这个过程是由CD进行的,CD是用于固体散装车厢下载的设备。 它们是围绕自己的轴旋转最多 180° 的旋转器,每次旋转运动都会卸下一或两辆重达 110 吨的货车 [40]。 货车在端点处有移动联轴器,允许它们在卸货期间进行旋转运动,不需要断开连接,如图 1 所示。
货车卸货过程发生在两个同时发生的事件中。 事件 1 对应于给料机驱动电机电流强度的变化。 事件 2 对应于喂料器的转速,即改变喂料器驱动电机的电流强度会干扰其转速变化,反之亦然。 两个过程事件的框图如图 2 所示。
B.取料机操作流程
矿石回收过程包括将储存的材料堆放在一起,然后通过传送带将其运输以进行装运。 BWRs 的额定容量为 8000 t/h,由 BWRs、传送带 (CT) 和装船机 (SL) 组成的运营路线的额定运输能力高达 16000 t/h。 因此,两个 BWR 可以同时恢复 16000 吨/小时的路线,或者一个 BWR 可以为 8000 吨/小时的路线执行恢复[44]。 如图3所示,左边的BWR和右边的斗轮突出显示,它们是攻击堆进行矿石回收的设备。
图 4 的框图显示了工厂运行过程中发生的三个主要事件。步骤是第一个发生的事件,随后是 BWR 喷枪旋转和 BW 旋转事件。 BW 旋转速度和平移步长事件不受控制,唯一受控的事件是所需流搜索中 BWR 喷枪旋转速度。 平移步骤的事件从 0 到 1 m 不等,并且与其他事件隔离发生,即在每个阶段的开始。 要重拍的层需要几个翻译步骤,这些步骤是阶段。 这些首先发生,在每个阶段之后,BW 旋转和喷枪旋转事件同时发生。
c.工厂模型
工厂模型是通过PIMS在其运行过程中收集的真实数据构思的,其中电厂的输入信号是VV运行过程中电厂的给料机驱动电机的电流强度,以及RP运行过程[40]、[44]中电厂的斗轮驱动电机的电流强度。工厂通过其传递函数在数学模型中表示,并被分为两组。
1) 第 1 组——由主要工厂组成,包括:
a) 一车一供料车卸车作业流程;
b) 一台BWR的矿石回收工艺;
c) 一台自卸车两台给料车卸车操作流程。
2) 第 2 组——由主要工厂组合形成的次要工厂组成,其中包括
a) 一台翻斗车和一台给料机的货车卸货同时操作过程,每个 BWR 的固体散装回收操作过程;
b) 两个 BWR 的固体散装恢复同步操作过程。
d.工厂
工厂1是指 4000 吨/小时的自卸车只有一个给料机的卸车过程,如图 5 的框图所示。这里,GPI (s) 是一个 CD 和一个给料机的传递函数 , 这是由
Plant II 是指容量为 8000 吨/小时的散装 BWR 的运行过程,如图 6 的框图所示。这里,GPII (s) 是一个 BWR 的传递函数,由下式给出
Plant III 是指一个 8000 t/h 容量的车卸货过程,有两个给料机,如图 7 的框图所示。Plant III 是四阶的,其传递函数从传递函数中获得 每个馈线,并联关联
其中 GCD 1 是给料机 1 的传递函数,GCD2 是给料机 2 的传递函数。
工厂 IV 是指一台 4000 吨/小时的自卸车卸车过程与矿石 BWR 的操作过程同时进行 容量为 8000 t/h,如图 8 的框图所示。这是一个五阶设备,其传递函数是从并联的设备 I 和 II 中获得的
如图 9 的方框图所示,工厂 V 指的是两个同步 BWR 的矿石 BWR 工艺,每个容量为 8000 吨/小时。工厂 V 的传递函数由下式给出
3. 模糊-神经PID模型的制定
本节介绍了PID控制器的制定和神经、模糊和神经模糊模型发展的控制整定问题。
A.PID控制整定问题的提出
从代表PID控制器在工厂动态中的作用的方程组中,从增益和特征多项式的系数的内部乘积是调整增益的机制的角度,建立了整定问题的表述。
让一个有m个零点的n阶模型由以下公式给出
与(6)的传递函数相关的三期PID控制器由以下公式给出
闭环控制系统的零点多项式的阶数为m+mpid,其中m是工厂零点的多项式阶数,mpid是PID控制器pid的阶数,mpid=0、1、2。如果mpid=0,就只有增益KP,如果mpid=1,就有增益KI和KP,如果mpid=2,就有三个增益[44]。从(6)和(7)中,PID控制器的闭环控制系统的零点多项式为
同样地,从(8)中可以得到闭环分母 多项式,它是由
其中nD-pid=0或1。当nD-pid=0时,PID控制器结构有导数和比例项。当nD-pid=1时,PID控制器的结构有一个积分项,将系统的阶数增加一个,从以下三个项开始--比例、导数和积分。
问题的方程式以内积的形式给出,该内积对闭环中的零多项式的系数进行加权,并添加到闭环传递函数的动态中。 从 (9) 中,一个方程组的向量 Kpid 未知,asi 作为设计规范,i = 1, 2, . . . , n + 1 被组装。 在矩阵形式中,这样的方程组表示为
在一个紧凑的形式中,这个方程组可以写成