机器学习
加文斯利
跨考计算机学院硕士,自学java/java web
展开
-
CNN[卷积神经网络]的架构
CNN卷积神经网络在全连接神经网络里拿掉一些参数,就可以得到用于影像处理的CNN。CNN主要的流程为:重复卷积和Max pooling的流程,最后扁平化得到结果。卷积Convolution卷积神经网络主要面向三个问题1、相同的图案可能出现在不同的地方2、一些图案可能远比整个图案要小,比如鸟的嘴3、对像素进行子采样不会更改对象以一张黑白图为例,墨水沾到的地方设为1,没沾到的地方设为0将会有一组过滤器进行过滤,那么如何理解过滤器呢?过滤器就是一个矩阵,它类比于全连接网络中的一个神经网络,用原创 2020-05-25 12:45:06 · 518 阅读 · 0 评论 -
深度学习之为什么要“深度”
Why deep?就像写程序一样,不能把所有程序都放在main里,一层冗余太大,且不能“复用”。Modularization:模组化,可以用较少的数据获得较好的结果。在第二层里,将第一层的结果作为模型去生成分类器(什么意思?)正是因为样本不够多,所以才要进行深度学习,如果样本足够多,直接Big Data就可以分类了模组化-Speech语音识别的第一阶段·分类:input -> acostic feature [声学特性], output -> state[状态]如图,每次取一个窗原创 2020-05-24 22:09:28 · 406 阅读 · 0 评论 -
机器学习初识 梯度下降&概率分类模型&逻辑回归
机器学习初识基础概念监督学习 :Supervised Learning 数据具有标签 需要大量的训练集,输出即标签半监督学习:Semi-supervised Learning 数据少量有标签,大量无标签非监督学习:Unsupervised Learning 数据无标签迁移学习:Transfer Learning结构化学习:Structured Learning - Beyond Classification加固学习:Reinforcement Learning 强化学习回归三步走思想St原创 2020-05-13 14:19:19 · 363 阅读 · 1 评论 -
Deep Learing 之 反向传播
Deep LearingStep1、define a set of function(其实就是Neural Network)Step2、goodness of functionStep3、pick the best functiondeep = Many hidden layers普遍性定理:一个N维向量只需要一个隐藏层就可以转为M维向量,只要给与足够的隐藏神经元。Backpropagation 反向传播如果要处理一个音频,它可能有上百万维组成,name对这个向量进行求偏微分得到的grad原创 2020-05-11 23:19:03 · 253 阅读 · 0 评论