题意
给定 n ,求
ϕ(n)=∑ni=1φ(i)
解法
这道题就要用到一种神奇的黑科技:杜教筛了!
首先来推公式:
∑d|nφ(d)=n···①
由①可知: φ(n)=n−∑d|n,d<nφ(d)···②
将②带入到所求的式子中去,有:ϕ(n)=∑i=1n[i−∑d|i,d<iφ(d)]=n∗(n+1)2−∑i=2n∑d|i,d<iφ(d)
=n∗(n+1)2−∑i=2n∑d=1⌊ni⌋φ(d)=n∗(n+1)2−∑i=2nϕ(⌊ni⌋)
然后就只需要不停递归下去,就可以达到比较优的复杂度: T(n)=O(n‾√)+∑n√i=1T(i)+T(ni) ,利用主定理便可得知复杂度为 O(n34)
如果能够预处理出一部分的 ϕ(n) ,那么复杂度可以进一步优化,当预处理出前 n23 项,复杂度最优
PS: 有人问:∑ni=2∑d|i,d<iφ(d)=∑ni=2∑⌊ni⌋d=1φ(d) 是怎么得到的,其实很简单,左边是一个一个枚举 φ(d) ,而右边则是算出 d 可以成为多少个数的因子,那么d 就可以产生那么多的贡献
复杂度
O( n23 )
代码
#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<map>
#define Rint register int
#define Lint long long int
using namespace std;
const int M=1e9+7;
const int N=10000010;
const int m2=500000004;
bool vis[N];
int pri[N/10],cnt;
Lint phi[N];
map<Lint,int> f;
void Prepare()
{
phi[1]=1;
for(int i=2;i<N;i++)
{
if( !vis[i] ) pri[++cnt]=i,phi[i]=i-1;
for(int j=1;j<=cnt;j++)
{
int x=pri[j]*i;
if( x>=N ) break ;
vis[x]=1;
if( i%pri[j] ) phi[x]=phi[i]*phi[pri[j]];
else
{
phi[x]=phi[i]*pri[j];
break ;
}
}
}
for(int i=1;i<N;i++) phi[i]=(phi[i]+phi[i-1])%M;
}
int cal(Lint n)
{
if( n<N ) return phi[n];
if( f.count(n) ) return f[n];
Lint x=2,ret=n%M*(n%M+1)%M*m2%M;
while( x<=n )
{
Lint y=n/(n/x);
ret=(ret-1ll*(y-x+1)%M*cal(n/x)%M+M)%M,x=y+1;
}
return f[n]=ret;
}
int main()
{
Lint n;
Prepare();
scanf("%lld",&n);
printf("%d\n",cal(n));
return 0;
}