1, 图像压缩的必要性
图像压缩:就是对图像数据按照一定的规则进行变换和组合,用尽可能的数据量来表示影像,简单地说,就是对象进行“瘦身”
必要性:随着现代技术的发展,要求传输的图像信息数据量越来越大,为了有效地传输和储存图像,有必要对图像进行压缩。
2, 图像压缩的可行性
从压缩的客体——“数字图像”来看,原始图像是高度相关的,存在很大的冗杂,数据冗杂造成比特数浪费,消除这些冗杂可以节约码字,也就是达到数据压缩的目的。大多数图像内相邻像素间有较大的相关性,这成为空间冗杂。序列图像前后帧内相邻之间有较大的相关性,这称为时间冗杂。二压缩的目的就是消除冗杂。
3, 图像压缩编码的分类
图像压缩编码技术从不同的角度出发,有不同的分类方法。根据压缩过程有无信息损失,可分为有损编码和无损编码。根据压缩原理进行划分,可以分为预测编码、变换编码、统计编码等。
a. 有损编码
有损编码又称为不可逆编码,是指对图像进行有损压缩,致使解码重新构造的图像与原始图像存在一定的失真,即丢失了了部分信息。由于允许一定的失真,这类方法能够达到较高的压缩比。有损压缩多用于数字电视、静止图像通信等领域
b. 无损编码
无损压缩又称可逆编码,是指解压后的还原图像与原始图像完全相同,没有任何信息的损失。这类方法能够获得较高的图像质量,但所能达到的压缩比不高,常用于工业检测、医学图像、存档图像等领域的图像压缩中。
c. 预测编码
预测编码是利用图像信号在局部空间和时间范围内的高度相关性,以已经传出的近邻像素值作为参考,预测当前像素值,然后量化、编码预测误差。预测编码广泛应用于运动图像、视频编码如数字电视、视频电话中。
d. 变换编码
变换编码是将空域中描述的图像数据经过某种正交变换(如离散傅里叶变换DFT、离散余弦变换DCT、离散小波变换DWT等)转换到另一个变换域(频率域)中进行描述,变换后的结果是一批变换系数,然后对这些变换系数进行编码处理,从而达到压缩图像数据的目的。
e. 统计编码
统计编码也称为熵编码,它是一类根据信息熵原理进行的信息保持型变字长编码。编码时对出现概率高的事件(被编码的符号)用短码表示,对出现概率低的事件用长码表示。在目前图像编码国际标准中,常见的熵编码方法有哈夫曼(Huffman)编码和算术编码。
4, 图像压缩的评价指标
压缩比和失真性是衡量图像压缩的重要指标
压缩比:图像压缩前后的信息量之比
失真性:主要针对有损编码而言,是指图像经有损压缩,然后将其解码后的图像与原图像之间的误差。有损压缩会使原始图像数据不能完全恢复,信息受到一定的损失,但压缩比较高,复原后的图像存在一定的失真。