自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(35)
  • 收藏
  • 关注

原创 11.1学习笔记——池化

在实际的卷积操作中,滤波器的应用区域几乎都是重叠的,在滤波器重叠的的情况下,使用im2col展开后没展开后的元素会多于原来的元素个数。FN,C,FH,FW分别是滤波器数量、通道数、滤波器的高、滤波器的宽。im2col是一个函数,将输入数据展开以适合滤波器(权重),对三维的输入数据应用im2col后,数据就会展开为二维矩阵(将包含批数量的4维数据转换成了2维数据)。CNN中各层之间传递的数据是4维数据,就好比输入一个数据的形状是(10,1,28,28),则其对应着10个高为28,长为28,通道为1的数据。

2022-11-01 20:16:25 3148 1

原创 深度学习第3三章笔记——神经网络

引入图6中的符号便于知识的学习,在图6中权重和隐藏层的神经元的右上角都有一个(1),表示权重与神经元的层号。可以用图1所示的图表示神经网络,将最左边的一列称为输入层,最右边的一列称为输出层,中间的一列称为中间层。且输出的值总和为1。sigmoid函数与阶跃函数之间存在共同点,两者均为非线性函数,神经网络的激活函数必须使用非线性函数,若使用线性函数,神经网络的层数就不再有意义了。计算矩阵的乘法时可以使用dot()函数进行,需要注意的是两个矩阵A,B,A的第一维元素个数必须要和矩阵B的行数相等。

2022-10-05 20:01:27 636

原创 机器学习实战第13章——利用PCA简化数据

降维技术能够使得数据变得更易使用,且能够去除数据中的噪声,降维一般作为预处理步骤,在数据应用到其他算法之前清洗数据。在众多的降维技术中,独立成分分析、因子分析和主成分分析较为流行,这里介绍的就是主成分分析(PCA)。它可以从数据中识别其他主要特征,通过沿着数据最大方差方向旋转坐标轴实现。以方差最大方向作为第一条坐标轴,后续坐标轴与前面的坐标轴正交。

2022-10-05 15:01:18 702

原创 机器学习实战第十章——利用k-均值聚类算法对未标注数据分组

函数有4个输入参数。缺点,K-均值聚类中簇的数目k是用户预先定义的,而用户并不能提前预知k的选择是否正确。创建矩阵存储数据集中的每一个点的簇分配结果以及平方误差,然后计算整个数据集的质心,使用列表保留所有的质心。我们可以很容易的对二维数据上的聚类进行可视化,但面对40维数据时,就不是那么容易了,两种量化方法:合并最近的质心,或者合并两个使得SSE增幅最小的质心。可以通过对生成的簇进行后处理,一种是将具有最大SSE值的簇划分成两个簇,具体实现时将最大簇包含的点过滤出来并在这些点上运行K-均值算法,记k=2.

2022-10-05 15:01:08 448

原创 机器学习实战第九章笔记——树回归

本章将会学习CART(分类回归树)的树构建算法,算法可以用于分类也可以用于回归。与回归树的做法不同,该算法需要在每个叶节点上构建出一个线性模型。树构建的算法还要调整一些参数,故会介绍使用python中tkinter模块建立图形交互界面。并在该界面的辅助下分析参数对回归效果的影响。

2022-10-05 15:00:54 485

原创 机器学习第八章笔记——预测数值型数据:回归

其中的一个方法是局部加权线性回归。从上面的数据可以看出:使用较小的核将得到较低的误差,但是在操作中并不能使用最小的核处理数据集,因为使用最小核处理将会造成过拟合,对新数据不一定能达到最好的预测效果。对于如何找出w,一个常用的方法是找出使误差最小的w,误差指的是预测y值和真实y值之间的差值,使用该误差的简单累加将使正差值与负差值相互抵消,因此采用平方误差。向前逐步回归属于一种贪心算法,每一步都尽可能的减少误差,最开始时所有的权重都设为1,之后每一步所做的决策是对某个权重增加或减少一个很小的值。

2022-10-05 15:00:31 2797

原创 机器学习第七章笔记——利用AdaBoost元算法提高分类性能

元算法是对其他算法进行组合的一种方式。AdaBoost是最流行的元算法。这一章学习讨论boosting方法及其代表分类器AdaBoost,建立单层决策树分类器。AdaBoost算法将应用在上述单层决策树分类器之上。

2022-10-05 15:00:05 671

原创 深度学习第二章笔记——感知机

权重是控制输入信号的重要性的参数,而偏置是调整神经元被激活的容易程度(输出信号为1的程度)的参数。当输入信号被送往神经元时,分别乘以固定的权重,神经元会计算传送过来的信号的总和,只有当总和大于设定的阈值时,输出1。也称“神经元激活”。灰色是输出0的区域,异或门与或门不同的有点在于两个输入都为1时,其输出为0,感知机无法仅仅利用一条线性直线就将两种情况分开,而图4中的非线性曲线就能实现了。第0层的两个神经元接收信号,并将信号发送至第1层的神经元,再由第1层的神经元将信号发送到第2层的神经元,最终输出结果。

2022-10-05 14:59:43 502

原创 机器学习第六章笔记——支持向量机

元组的第一个参数是描述所用核函数类型的一个字符串,其他参数是核函数可能需要的可选参数。在线性核函数的情况下,内积计算在”所有数据集“和数据集中的一行这两个输入之间展开,径向基函数的情况下,在for循环中对于矩阵的每一个元素计算高斯函数的值,当for循环结束后,将计算过程应用到整个向量上去。通过上面观察上面两组数据集,可以看出对于线性可分数据集,可以轻易的画出一条直线将其分开,这条直线又叫分隔超平面,因为给出的例子是二维的,所以此时的超平面就是一条直线,若数据是三维的,那么此时用来分割数据的就是一个平面了。

2022-10-04 16:00:28 706

原创 机器学习第五章笔记——logistic回归(逻辑回归)

这个章节中将首次接触到最优化算法,假设目前存在一些数据点,用一条之间对这些点进行拟合,这个拟合过程就被称为回归。利用Logistic回归进行分类的主要思想就是:根据现有数据对分类边界线建立回归公式,以此进行分类。回归一词源于最佳拟合,即要找到最佳拟合参数集。训练分类器时的做法其实就是在寻找最佳拟合参数,使用的就是最优化算法。二值型输出分类器的数学原理。Logistic回归的一般过程1、收集数据:采用任意方法收集数据2、准备数据:由于需要计算距离,所以就要求数据类型为数值型,结构化数据格式则最佳。

2022-10-03 16:44:40 1122

原创 机器学习第四章笔记——基于概率论的分类方法:朴素贝叶斯

概率论是许多机器学习算法的基础,在之前的学习中计算特征值取某个值的概率时就涉及到了一些概率知识,先统计特征在数据集中取某个特定值的次数,然后除以数据集的实例总数,就得到特征取该值的概率。

2022-10-03 16:32:07 579

原创 机器学习第三章笔记——决策树

遍历当前特征中的唯一属性值,对每个特征划分一次数据集,并计算新的香农熵,对所有唯一特征值得到的熵求和。若分支下的数据属于同一个数据类型则当前无需阅读的垃圾邮件已经正确的划分数据分类,无需对数据集进一步分割,反之,若数据子集内的数据不属于同一个类型,就需要重复之前划分子集的操作。一般我们采用递归的原则处理数据集,而递归结束的条件是,程序遍历完所有划分数据集的属性,或者每个分支下的所有实例都具有相同的分类,当所有实例都具有相同的分类时就得到一个叶子节点或终止块,任何到达叶子节点的数据必然属于叶子节点的分类。

2022-10-03 16:31:19 373

原创 机器学习第二章笔记——k-近邻算法

k-近邻算法是通过采用测量不同特征值之间的距离方法来进行分类的:优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂度高、空间复杂度高适用数据范围:数值型和标称型。kNN的工作原理是:存在一个样本数据集合(训练样本集),且样本集中每个数据都存在标签(样本集中的每个数据与所属分类的对应关系)。当输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,通过算法提取样本集中特征最相似(最近邻)数据的分类标签。

2022-10-03 16:30:52 561

原创 机器学习第一章笔记——机器学习基础

简单而言机器学习就是将无序的数据转换为有用的信息,其主要任务就是分类;表1 基于四种特征点鸟物种分类图图1 特征和标识的目标变量学习分类首先要做的就是算法训练,一般情况下为算法输入大量的已分类数据作为算法的训练集,这些训练集主要是用于训练机器学习算法的数据样本集合。例如上面的表一中给出了6个训练样本,由这6个训练样本可以得到一个训练集,给出的例子训练集中的4种特征分别为:体重、翼展、有无脚蹼,后背颜色;目标变量为鸟类的品种,也是机器学习算法得到的预测结果。

2022-10-03 16:30:23 233

原创 Python计算机视觉学习第10章——OpenCV

引言这里主要学习如何通过Python接口使用流行的计算机视觉库OpenCV。OpenCV是一个C++库,用于实时处理计算机视觉问题。

2022-08-28 17:29:27 3065

原创 python计算机视觉学习第9章——图像分割

基于这种标记在RGB值上可以训练除一个朴素贝叶斯分类器,之后计算每一个像素的分类概率,这些计算除的分类概率便是从源点出来到汇点取的边的权重。图割图像分割的思想是用图来表示图像,并对图进行划分以使割代价最小,用图表示图像时,增加两个额外的节点,源点和汇点,并仅考虑那些将源点和汇点分开的割。这里使用的图像是书中用的数据集图像,可以帮助评价分割性能的真实标记,并模拟用户选择矩形图像区域或用‘lasso’之类的工具来标记前景和背景的标注信息。除像素节点以外还需两个特定的节点——源点与汇点,代表图像的前景和背景。

2022-08-21 12:48:47 4796

原创 python计算机视觉学习第8章——图像内容分类

不同于前面的例子,这里再载入数据集后要将数组转换成列表,这是因为LibSVM不支持数组对象的输入,使用使用了内建函数map()进行转换,map()函数中用到了对角一个元素都会进行转换的list()函数。SVM是一类强大的分类器,可以在很多分类问题中给出出现有水准很高的分类结果,最简单的SVM通过在高维空间中寻找一个最优线性分类面,并尽可能的将两类数据分开。PCA非常适合用于降维处理。从上图的结果中我们可以看到分界线将两个数据集分割开,其中星号为正确的分类的点,圈点为分类错误的点,分割线又可以称为决策边界。

2022-08-21 12:48:14 2678

原创 python计算机视觉学习第七章——图像搜索

对于高层查询,比如寻找相似的物体,将查询图像与数据库中所有的图像进行完全比较往往是不可行的,因为当数据库很大时,这种查询方式会耗费很长的时间。没有一个是准确的时,分数为0;lmlist包含所有要索引的图像文件名,imwords包含了单词的单词索引、用到了哪个词汇、以及单词出现在哪些图像中,imhistograms包含了全部每幅图像的单词直方图。建立好图像的索引后,就可以在数据库中搜索相似的图像了,书中使用的是BoW来表示整个图像,为了实现搜索,在imagesearch.py中添加Scanner类。.....

2022-08-12 14:21:55 2609 2

原创 计算机视觉学习第六章——图像聚类

计算L的特征向量,并使用K个最大特征值对应的k个特征向量,构建出一个特征向量集从而找到聚类簇,创建一个矩阵,这个矩阵就是有求出的k个特征向量构成的每一行都可以看成是一个新的特征向量,长度为k,本质上谱聚类算法是将原始空间中的数据转换成更容易聚类的新的特征向量。这里进行对一个单幅图像中的像素而非全部图像中的像素而非全部图像进行聚类的例子,除了在一些简单的图像上,单纯在像素水平上应用K-means是无意义的,要产生有意义的结果往往就需要更复杂的类模型。对于给定的不同的阈值,可以直接利用原来的树,无需重新计算。.

2022-08-12 14:21:39 4233

原创 计算机视觉学习第5章——多视图几何

当有一个场景的两个视图以及视图中的对应图像点,那么根据照相机间的空间相对位置关系、照相机的性质以及三维场景点的位置,可以得到对这些图像点的一些几何关系约束。对于静止图像,一个办法是找到一个中央参考视图,然后计算与之有关的所有其他照相机矩阵,另一个方法就是计算一个图像对的照相机矩阵和三维重建,然后增量的加入新的图像和三维点。分析:上述代码主要功能是绘制出第一个视图以及该视图中的图像点,并将投影后的点绘制在另一张图上,我们可以看到第二幅图像中的点比第一幅要多一些,这些多出来的点来源于视图2和视图3的重建。...

2022-08-06 13:08:21 4465

原创 计算机视觉学习第4章——增强现实

增强现实又称AR,是将物体和相应信息放置在图像数据上的一系列操作的总称,是当前非常热门的一项技术,而最为典型的例子就是放置一个三维计算机图形学模型,并使之看起来属于该场景。在之前的学习里我们讲述了图像到图像之间的映射和变换,而在处理三维图像和平面图像之间的映射,我们还需在映射中加入部分照相机产生图像过程的投影特性。2、将照相机和标定物体放置在平面上,使得照相机的背面和标定物体平行,同时物体位于照 相机图像视图的中心,你可能需要调整照相机或者物体来获得良好的对齐效果;...

2022-08-06 13:07:18 1718

原创 python计算机视觉学习第三章——图像到图像的映射

引言一、 单应性变换1.1 直接线性变换算法1.2 仿射变换二、 图像扭曲2.1 图像中的图像2.2 分段仿射扭曲2.2 图像配准三、创建全景图3.1 RANSAC(随机一致性采样)3.2 拼接图像四、总结

2022-07-30 14:30:12 1084

原创 python计算机视觉学习第二章——局部图像描述子

实验结果得出了两幅图像相匹配得到的对应角点,函数get_descriptor的参数为奇数大小长度的方形灰度图像块,该图像块的中心点位处理的像素点。对于将一幅图像中的特征匹配到另一幅图像的特征,一种由Lowe提出的稳健准则是使用这两个特征距离和两个最匹配特征距离的比率,该准则保证能够找到足够相似的唯一特征,可以大大降低错误的匹配数。兴趣点描述子是分配给兴趣点的一个向量,描述该点附近的图像的表观信息,描述子越好,寻找到的对应点越好,用对应点或者对应来描述相同物体和场景点在不同图像上形成的像素点。...

2022-07-30 14:28:18 1006 1

原创 python计算机视觉学习笔记1——基本的图像操作和处理

目录一、PIL:Python图像处理类库1.1 转化图像格式1.2 创建缩略图 1.3 复制和粘贴图像区域 1.4 调整尺寸和旋转 二、Matplotlib2.1 绘制图像、点和线2.2 图像轮廓和直方图 2.3 交互式标注三、Numpy 3.1 图像数组表示3.2 灰度变换 3.3 直方图均衡化3.4 图像平均3.5 图像成分分析(PCA)四、 Scipy4.1 图像模糊4.2 图像导数 4.3 形态学:对象计数4.4 有用的Scipy模块五、图像去噪六、总结 PIL在python中提供

2022-07-21 16:55:42 2333 2

原创 数字图像处理第十二章笔记——目标识别

本章主要讲述了目标识别的相关基础知识,包括模式与模式类的基本知识、决策理论方法的识别、训练算法,神经网络、结构方法等的相关内容。

2022-07-20 16:07:26 1352

原创 数字图像处理第十章笔记——图像分割

目录引言一、基础知识 二、 点、线和边缘检测2.1 背景知识2.2 孤立点检测2.3 线检测2.4 边缘检测 2.5 基本边缘检测、更先进的边缘检测三、阈值处理3.1 基础知识 3.2 基本的全局阈值处理 3.3 用Otsu方法的最佳全局阈值处理3.4 图像平滑、边缘改善全局阈值处理 ​编辑3.5 多阈值处理3.6 可变阈值处理四、基于区域的分割 4.1 区域生长4.2 区域分裂与聚合五、形态学分水岭的分割 从第九章图像形态学开始,研究方向便开始从输入和输出都是图像的图像处理方法,转变成了输入

2022-07-15 15:28:29 2937

原创 数字图像处理第九章笔记——形态学图像处理

目录引言一、预备知识1.1 平移与反射1.2 结构元二、 腐蚀和膨胀2.1 腐蚀2.2 膨胀 2.3 对偶性 2.4 python实现腐蚀和膨胀三、开操作和闭操作四、 击中或击不中变换 五、基本的形态学算法 5.1 边界提取5.2 孔洞填充 5.3 连通分量的提取 5.4 凸壳5.5 细化5.6 粗化 5.7 骨架六、灰度级形态学 6.1 腐蚀和膨胀 6.2 开操作和闭操作 七、总结 这里的形态学并非指生物学的那一个分支,而是数学形态学的内容,将数学形态学作为工具从图像中提取表达和描绘区域形状

2022-07-12 20:06:44 3209 1

原创 数字图像处理第8章——图像压缩

目录引言:一、基础知识 1.1 编码冗余1.2 空间冗余和时间冗余1.3 不相关的信息1.4 图像信息的度量1.5 保真度准则 1.6 图像压缩模型 二、一些基本的压缩方法2.1 霍夫曼编码2.2 Golomb编码2.3 算术编码 2.4 基于符号的编码2.5 比特平面编码2.6 块变换编码 2.7 小波编码 2.8 JPEG-2000 图像压缩是一种减少描绘一幅图像所需数据量的技术核科学,是数字图像处理领域中最有用也是商业上最成功的技术之一。使用720*480*24比特的像素阵

2022-07-08 13:32:58 3633

原创 数字图像处理第7章——小波和多分辨率处理

目录引言:一、背景1.1 图像金字塔1.2 子带编码1.3 哈尔变换二、多分辨率展开2.1 级数展开 2.2 尺度函数 2.3 小波函数 三、一维小波变换 3.1 小波级数展开3.2 离散小波变换 3.3 连续小波变换 四、快速小波变换 五、二维小波变换 尽管20世纪50年代末起傅里叶变换就一直是基于变换的的图像处理的基石,但近年来出现了一种新的名为小波变换的变换使得压缩、传输和分析图像变得更加容易。与基函数为正弦函数的傅里叶变换不同,小波变换基于一些小型波,称为小波,具有变化

2022-07-08 13:32:41 3278

原创 数字图像处理第六章——彩色图像处理

目录引言一、彩色基础二、彩色模型2.1 RGB彩色模型2.2 CMY和CMYK彩色模型 2.3 HSI彩色模型三、伪彩色图像处理3.1 灰度分层3.2 灰度到彩色的变换四、彩色变换​编辑色调与色彩校正五、平滑与锐化5.1 平滑5.2 锐化 在图像处理中,彩色的运用受两个主要因素的推动。第一,彩色是--个强有力的描绘子,它常常可简化从场景中提取和识别目标;第二,人可以辨别几千种彩色色调和亮度,但相比之下只能辨别几十种灰度色调。第二个因素在人工图像分析中特别重要。 彩色图像处理可分为

2022-06-30 10:22:36 6174 1

原创 数字图像处理第五章——图像复原与重建

目录引言:一、图像退化/复原过程的模型二、噪声模型2.1 噪声的空间与频率特性2.2 一些重要的噪声高铝密度函数2.2.1 高斯噪声2.2.2 瑞利噪声2.2.3 伽马噪声2.2.4 指数噪声2.2.5 均匀噪声2.2.6 椒盐噪声(脉冲噪声)2.2.7 python 实现2.3 周期噪声三、空间滤波3.1 均值滤波器3.1.1 算术均值滤波器3.1.2 几何均值滤波器3.1.3 谐波均值滤波器3.1.4 逆谐波均值滤波器3.1.5 python 实现3.2 统计排序滤波器3.2.1 中值滤波器3.2.2

2022-06-27 14:55:09 2395

原创 数字图像处理第四章——频率域滤波

第三章我们研究了空间滤波的相关知识,但是若想彻底理解这一领域,我们还需学习在图像滤波中如何应用傅里叶变换核频率域的基本知识,注重关注基本原理以及它们与数字图像处理的关系,本章将为傅里叶变换打下基础,并强调图像特征与用于表达这些特征的数学工具之间的联系。 在高等数学中我们便学习到了傅里叶级数与傅里叶变换,这是由法国数学家吉恩·巴普提斯特·约瑟夫·傅里叶发现并发表,这两个重要的数学公式为数学发展历史上做出了巨大贡献,它点出了任何周期函数都可以表示为不同频率的正弦项和/或余弦项的形式,每个正弦项和/

2022-06-24 21:42:16 2024

原创 数字图像处理第三章——灰度变换与空间滤波

目录引言:一、相关背景1.1 灰度变换与空间滤波基础二、基本灰度变换函数2.1 图像反转2.2 对数变换2.3 幂律(伽马)变换2.4 分段线性变换函数 三、直方图处理3.1 直方图均衡3.2 直方图匹配(规定化)四、空间滤波4.1 机理4.2 相关与卷积五、平滑空间滤波器5.1 平滑线性滤波器5.2 统计排序(非线性滤波)滤波器 六、锐化空间滤波器6.1 拉普拉斯算子(处理二阶微分)6.2 soble算子(处理一阶微分)本章将重点对灰度变换与空间滤波进行了解。灰度变换是作用于图像的单个像素的,主要以对比度

2022-06-21 09:56:24 1422

原创 数字图像处理第二章——数字图像基础

一、视觉感知要素:尽管数字图像处理是建立在数学和概率公式基础上的,但在选择何种技术时,人的直觉与分析起着核心作用。这种选择往往是基于主观的视觉判断做出的,因此想要使得数字图像处理更为贴合人类视觉,研究这些视觉感知要素是非常必要的。1. 人眼结构图 ...

2022-05-09 17:26:14 1612

原创 数字图像处理——绪论

目录前言一、何为数字图像处理 1.1图像的定义 1.2三种典型的计算处理二、使用步骤1.引入库2.读入数据总结前言数字图像处理方法主要体现在两个应用领域:一、改善图示信息以便人们能够对此加以解释二、为存储、传输和表示而对图像数据进行处理以便机器自动处理提示:以下是本篇文章正文内容,下面案例可供参考一、何为数字图像处理 ...

2022-05-09 14:07:16 1061

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除