Wh的博客

记录学习,记录思考

实习总结(四)

还是得坚持写实习总结!!虽然晚了几天 - * - * -
这一周一直在换方向,很烦啊!!

issue1

在更换dispnet网络结构时,非常骚的把优化策略 ‘step’ 改为了 ‘multistep’ 时忘记添加stepsize,导致出现了unix data -d @ 146… (浮点运算格式异常)。

issue2

思路:dispnet只是对左右眼的图片进行匹配和估计,使用的是每张图片的patches内像素点的信息先匹配再做估计,将病态及非病态问题并未加以区分,就统一做了估计。这样很有可能把本来匹配正确的像素点的值给破坏掉。沿着郑义的思路,采用CRF(条件随机场),参照(crf as rnn),利用各个像素点间的联系,其实这也是想把图片的空间信息利用好。文章计算出图片中每个像素点与周围像素点的关系(可以把它理解为该像素点的影响力),再加入到FCN的后面,就相当于一个调优的过程吧,用它修改dispnet的话,就是把它加在correlation层之前,开始的两层卷积之后,当做多多利用空间信息吧。
然而,被赵总否决,理由是,CRF并不属于我们想要的人工智能(一点也不智能)。

issue3

练习tumx操作,分屏 | 挂起 | 唤醒。

issue4

tanh,sigmoid,batchnorm: 一般来说,我们希望神经网络的输入符合“均值为零,方差为一”分布的标准输入,且值域可以在一个小范围之间,在某些时候,tanh可以满足这个条件,sigmoid与它的区别就是在至于范围。有一个说法是,当层数大于100时,选用Batchnorm层+Relu会比仅仅使用前两种激活函数效果要好的多且方便,当然,浅层网络不需要用BN。

issue5

阅读 CRL(cascade residual learning) 算是读后感吧。

阅读更多
个人分类: 实习总结
上一篇实习总结(三)
想对作者说点什么? 我来说一句

PHP、Mysql实训心得体会.doc

2013年03月29日 255KB 下载

没有更多推荐了,返回首页

关闭
关闭