数学在算法中的应用:组合数学

本文探讨了数学在算法中的应用,主要涵盖加法原理、乘法原理、排列与组合的概念和公式,包括排列数与组合数的计算方法。还介绍了鸽巢原理、二项式定理、杨辉三角以及容斥原理,这些都是解决计数问题的重要工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

加法原理和乘法原理

加法原理:做一件事有 n 类,在第一类办法中有 m1 种不同的办法,在二类办法中有 m2 中不同的办法,在第 n 类办法中有 mn中的不同的办法,那么完成这件事总共有 m1 + m2 + … + mn种不同方法

比如小明一家人外出旅游,可以坐汽车,可以坐火车,也可以坐飞机。出发的那一天汽车有3班,火车有4班,飞机有5班,旅游的出行方式可以3 + 4 + 5 = 12种

在乘法原理中如果 m1, m2, … , mn 可以重叠,就是容斥原理

乘法原理:做一件事需要分成 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,…,做第 n 步有 mn 种不同的方法,完成这件事总共有 m1 * m2 * m3 * … * mn 种不同的方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java识堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值