直方图均衡化(HE):
“ 如果一副图像的像素占有很多的灰度级而且分布均匀,那么这样的图像往往有高对比度和多变的灰度色调。直方图均衡化就是一种能仅靠输入图像直方图信息自动达到这种效果的变换函数。它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像元取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。 ”【来源】
如上图,左图为原图像和其对应的直方图分布,右图为经过直方图均衡化之后的结果图像和其对应的直方图分布;由于左图的直方图集中分布在100-200的区域,图像对比度较低,所利用的灰度级较少,整体图像比较模糊。直方图均衡化的目标就是对图像进行非线性拉伸,增强像素灰度值的动态范围,从而达到增强对比度的目的,使图像可以更细致的利用整个灰度级区间。
推导过程:
首先我们将原图像的像素值缩放到0-1的范围得到:f(x),对其直方图标准化以得到原图像的PDF(概率分布函数):P(f),为了更好的进行推导,我们不妨假设这个f(x)是连续可导的。我们的目标是求出一个T变换(可差分、单调递增、可逆),使得目标图像g(x)满足:
目标图像g(x)的概率分布P(g)满足均匀分布: