Histogram Equalization

直方图均衡化是一种图像处理技术,用于提高图像对比度。通过改变像素灰度值,扩展灰度级动态范围,使图像清晰度增强。推导过程中,通过寻找累积分布函数实现像素值的非线性拉伸。对比度限制的直方图均衡化(CLHE)解决了概率过高导致的像素值跳跃问题,而自适应直方图均衡化(AHE)则实现了局部对比度增强,避免亮度不连续。文章还提供了HE、CLHE、AHE的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直方图均衡化(HE):

“        如果一副图像的像素占有很多的灰度级而且分布均匀,那么这样的图像往往有高对比度和多变的灰度色调。直方图均衡化就是一种能仅靠输入图像直方图信息自动达到这种效果的变换函数。它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像元取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。        ”【来源


如上图,左图为原图像和其对应的直方图分布,右图为经过直方图均衡化之后的结果图像和其对应的直方图分布;由于左图的直方图集中分布在100-200的区域,图像对比度较低,所利用的灰度级较少,整体图像比较模糊。直方图均衡化的目标就是对图像进行非线性拉伸,增强像素灰度值的动态范围,从而达到增强对比度的目的,使图像可以更细致的利用整个灰度级区间。

推导过程:

首先我们将原图像的像素值缩放到0-1的范围得到:f(x),对其直方图标准化以得到原图像的PDF(概率分布函数):P(f),为了更好的进行推导,我们不妨假设这个f(x)是连续可导的。我们的目标是求出一个T变换(可差分、单调递增、可逆),使得目标图像g(x)满足:

       

目标图像g(x)的概率分布P(g)满足均匀分布:

         

直方图均衡化是一种图像增强的方法,它通过对图像像素值的直方图进行调整,使得图像的对比度增强,细节更加清晰。直方图均衡化在图像处理中起到了非常重要的作用。 直方图均衡化的基本原理是将图像像素值的分布调整为更均匀的分布。首先,计算图像的灰度直方图,即统计每个灰度级的像素个数。然后,根据直方图,计算每个灰度级的累计概率分布。接下来,根据累计概率分布,将原图像的每个像素值映射到新的像素值,使得所得到的图像像素值分布更均匀。 直方图均衡化能够有效地增强图像的对比度,使得图像中的细节更加明显。通过调整图像的像素值分布,直方图均衡化能够增加图像中的亮度差异,使得暗区域变亮、亮区域变暗,从而使得整个图像具有更好的视觉效果。 直方图均衡化的应用非常广泛,可以用于图像增强、图像配准、图像压缩等领域。在图像增强中,直方图均衡化可用于改善照明条件差的图像,提升图像的视觉质量。在图像配准中,直方图均衡化可用于改善不同图像之间的亮度差异,使得它们更容易对齐。在图像压缩中,直方图均衡化可用于减小图像中像素值的动态范围,从而提高压缩效果。 综上所述,直方图均衡化是一种重要的图像处理技术,它能够改善图像的对比度,提升图像的视觉效果。在实际应用中,直方图均衡化有着广泛的应用前景,并且可以与其他图像处理方法相结合,进一步提高图像处理的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值