大家倒垃圾的时候,都希望垃圾箱距离自己比较近,但是谁都不愿意守着垃圾箱住。所以垃圾箱的位置必须选在到所有居民点的最短距离最长的地方,同时还要保证每个居民点都在距离它一个不太远的范围内。
现给定一个居民区的地图,以及若干垃圾箱的候选地点,请你推荐最合适的地点。如果解不唯一,则输出到所有居民点的平均距离最短的那个解。如果这样的解还是不唯一,则输出编号最小的地点。
输入格式:
输入第一行给出4个正整数:N(<= 103)是居民点的个数;M(<= 10)是垃圾箱候选地点的个数;K(<= 104)是居民点和垃圾箱候选地点之间的道路的条数;DS是居民点与垃圾箱之间不能超过的最大距离。所有的居民点从1到N编号,所有的垃圾箱候选地点从G1到GM编号。
随后K行,每行按下列格式描述一条道路:
P1 P2 Dist
其中P1和P2是道路两端点的编号,端点可以是居民点,也可以是垃圾箱候选点。Dist是道路的长度,是一个正整数。
输出格式:
首先在第一行输出最佳候选地点的编号。然后在第二行输出该地点到所有居民点的最小距离和平均距离。数字间以空格分隔,保留小数点后1位。如果解不存在,则输出“No Solution”。
输入样例1:4 3 11 5 1 2 2 1 4 2 1 G1 4 1 G2 3 2 3 2 2 G2 1 3 4 2 3 G3 2 4 G1 3 G2 G1 1 G3 G2 2输出样例1:
G1 2.0 3.3输入样例2:
2 1 2 10 1 G1 9 2 G1 20输出样例2:
No Solution
分析:参加了柳婼大神的解法,把G系列编号到n之后。然后从n+1开始最短路,找到符合标准的即可。在判断有没有的地方我是判断不可行解的数量,如果都不可行则输出不可能。因为编译器版本的问题,我这个没有stoi,就自己写了一个。
#include <bits/stdc++.h>
using namespace std;
int n,m,k,ld;
const int N=1500;
const int INF=99999999;
int mp[N][N];
int d[N];
int visit[N];
int stoi2(string a)
{
int q;
stringstream in;
in.clear();
in<<a;
in>>q;
return q;
}
void djk(int s)
{
memset(visit,0,sizeof(visit));
fill(d,d+N,INF);
d[s]=0;
for(int i=1;i<=n+m;i++)
{
int u=-1;int MIN=INF;
for(int j=1;j<=n+m;j++)
{
if(!visit[j]&&d[j]<MIN)
{
MIN=d[j];
u=j;
}
}
if(u==-1) return;
visit[u]=1;
for(int j=1;j<=n+m;j++)
{
if(!visit[j]&&d[j]>d[u]+mp[u][j])
{
d[j]=d[u]+mp[u][j];
}
}
}
}
int main()
{
cin>>n>>m>>k>>ld;
string q,w;
int dis;
fill(mp[0],mp[0]+N*N,INF);
for(int i=0;i<k;i++)
{
cin>>q>>w>>dis;
int num1,num2;
if(q[0]=='G')
{
string tmp=q.substr(1);
num1=n+stoi2(tmp);
}
else
{
num1=stoi2(q);
}
if(w[0]=='G')
{
string tmp=w.substr(1);
num2=n+stoi2(tmp);
}
else
{
num2=stoi2(w);
}
mp[num1][num2]=dis;
mp[num2][num1]=dis;
}
int ok=0;
int record;
int MAX=-1;
double ans=0;
for(int i=n+1;i<=n+m;i++)
{
int ok2=ok;
djk(i);
int MIN=INF;
for(int j=1;j<=n;j++)
{
if(d[j]>ld) {ok++;break;}
if(MIN>d[j])
{
MIN=d[j];
}
}
if(ok!=ok2) continue;
if(MIN>MAX)
{
ans=0;
MAX=MIN;
record=i;
for(int j=1;j<=n;j++)
{
ans+=d[j];
}
ans/=(n*1.0);
}
else if(MIN==MAX)
{
double ans2=0;
for(int j=1;j<=n;j++)
{
ans2+=d[j];
}
ans2/=(n*1.0);
if(ans2<ans)
{
record=i;
ans=ans2;
}
}
}
if(ok!=m)
{
cout<<'G'<<record-n<<endl;
printf("%d.0 %.1lf",MAX,ans);
}
else
{
cout<<"No Solution";
}
return 0;
}