L3-005. 垃圾箱分布

大家倒垃圾的时候,都希望垃圾箱距离自己比较近,但是谁都不愿意守着垃圾箱住。所以垃圾箱的位置必须选在到所有居民点的最短距离最长的地方,同时还要保证每个居民点都在距离它一个不太远的范围内。

现给定一个居民区的地图,以及若干垃圾箱的候选地点,请你推荐最合适的地点。如果解不唯一,则输出到所有居民点的平均距离最短的那个解。如果这样的解还是不唯一,则输出编号最小的地点。

输入格式:

输入第一行给出4个正整数:N(<= 103)是居民点的个数;M(<= 10)是垃圾箱候选地点的个数;K(<= 104)是居民点和垃圾箱候选地点之间的道路的条数;DS是居民点与垃圾箱之间不能超过的最大距离。所有的居民点从1到N编号,所有的垃圾箱候选地点从G1到GM编号。

随后K行,每行按下列格式描述一条道路:
P1 P2 Dist
其中P1和P2是道路两端点的编号,端点可以是居民点,也可以是垃圾箱候选点。Dist是道路的长度,是一个正整数。

输出格式:

首先在第一行输出最佳候选地点的编号。然后在第二行输出该地点到所有居民点的最小距离和平均距离。数字间以空格分隔,保留小数点后1位。如果解不存在,则输出“No Solution”。

输入样例1:
4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2
输出样例1:
G1
2.0 3.3
输入样例2:
2 1 2 10
1 G1 9
2 G1 20
输出样例2:

No Solution


分析:参加了柳婼大神的解法,把G系列编号到n之后。然后从n+1开始最短路,找到符合标准的即可。在判断有没有的地方我是判断不可行解的数量,如果都不可行则输出不可能。因为编译器版本的问题,我这个没有stoi,就自己写了一个。


#include <bits/stdc++.h>

using namespace std;
int n,m,k,ld;
const int N=1500;
const int INF=99999999;
int mp[N][N];
int d[N];
int visit[N];
int stoi2(string a)
{
    int q;
    stringstream in;
    in.clear();
    in<<a;
    in>>q;

    return q;
}
void djk(int s)
{
    memset(visit,0,sizeof(visit));
    fill(d,d+N,INF);
    d[s]=0;
    for(int i=1;i<=n+m;i++)
    {
        int u=-1;int MIN=INF;
        for(int j=1;j<=n+m;j++)
        {
            if(!visit[j]&&d[j]<MIN)
            {
                MIN=d[j];
                u=j;
            }
        }
        if(u==-1) return;
        visit[u]=1;
        for(int j=1;j<=n+m;j++)
        {
            if(!visit[j]&&d[j]>d[u]+mp[u][j])
            {
                d[j]=d[u]+mp[u][j];
            }
        }
    }
}
int main()
{
    cin>>n>>m>>k>>ld;
    string q,w;
    int dis;
    fill(mp[0],mp[0]+N*N,INF);
    for(int i=0;i<k;i++)
    {
        cin>>q>>w>>dis;
        int num1,num2;
        if(q[0]=='G')
        {
            string tmp=q.substr(1);
            num1=n+stoi2(tmp);
        }
        else
        {
            num1=stoi2(q);
        }
        if(w[0]=='G')
        {
            string tmp=w.substr(1);
            num2=n+stoi2(tmp);
        }
        else
        {
            num2=stoi2(w);
        }
        mp[num1][num2]=dis;
        mp[num2][num1]=dis;
    }
    int ok=0;
    int record;
    int MAX=-1;
    double ans=0;
    for(int i=n+1;i<=n+m;i++)
    {
        int ok2=ok;
        djk(i);
        int MIN=INF;
        for(int j=1;j<=n;j++)
        {
            if(d[j]>ld) {ok++;break;}

            if(MIN>d[j])
            {
                MIN=d[j];
            }
        }
        if(ok!=ok2) continue;
        if(MIN>MAX)
        {
             ans=0;
             MAX=MIN;
             record=i;
             for(int j=1;j<=n;j++)
             {
                 ans+=d[j];
             }
             ans/=(n*1.0);
        }
        else if(MIN==MAX)
        {
             double ans2=0;
             for(int j=1;j<=n;j++)
             {
                 ans2+=d[j];
             }
             ans2/=(n*1.0);
             if(ans2<ans) 
             {
                 record=i;
                 ans=ans2;
             }

        }


    }
    if(ok!=m)
    {
    cout<<'G'<<record-n<<endl;
    printf("%d.0 %.1lf",MAX,ans);
    }
    else
    {
        cout<<"No Solution";
    }


    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值