zoj2838 &&倍增法

2 篇文章 0 订阅

//离线算法是在dfs过程中进行相连两点的寻找最近祖先,
//在线算法是dfs结束后直接查找相连两点的最近祖先

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <string.h>
using namespace std;
const int n=50002;
vector<int> g[n];//表示图(树)
int nn;
int p[n][20];//表示向上翻2^i代的祖先节点
int vis[n],s[n];//s[i]表示2^i
int deep[n];//表示点i的深度
int dfs(int u,int fa,int dep)//作用:得到了第1代的祖先节点,得出树的深度
{
    int tree_deep=dep;
    deep[u]=dep;
    p[u][0]=fa;//u的第2^0代祖先是u的父亲
    vis[u]=1;
    int len=g[u].size();
    for(int i=0;i<len;i++)
    {
        int v=g[u][i];
        if(vis[v]==0)
        {
            tree_deep=max(tree_deep,dfs(v,u,dep+1));//tree_deep是树的深度
        }
    }
    return tree_deep;
}
void init()
{
    memset(vis,0,sizeof vis);
    memset(p,-1,sizeof p);
    int tree_deep=dfs(0,-1,1);//tree_deep是树的深度
    for(int i=1;s[i]<=tree_deep;i++)//依次得出2^i代的祖先节点
    {
        for(int j=1;j<n;j++)//依次得出节点j的2^i代的祖先节点
            if(p[j][i-1]!=-1)
        {
            int tmp=p[j][i-1];//tmp是j点的第2^(i-1)代祖先
            p[j][i]=p[tmp][i-1];//p[j][i]是j的第2^i代祖先,也就是tmp的第2^(i-1)代祖先
        }
    }
}
int lca(int x,int y)
{
    if(deep[x]<deep[y]) x^=y,y^=x,x^=y;//确保节点x比y深
    int log;
    for(log=0;s[log]<=deep[x];log++);//2^log是x向上移动代数的上限
    log--;
    for(int i=log;i>=0;i--)
    {
        if(deep[x]-s[i]>=deep[y])//如果向上移动2^i代没有超过y那代
            x=p[x][i];//x向上移动2^i代
    }
    if(x==y) return x;//上面那个for循环使得x和y在同一代上,如果刚好x就是y,返回x
    for(int i=log;i>=0;i--)//从上限开始for循环遍历
    {
        if(p[x][i]!=-1 && p[x][i]!=p[y][i])//已经在同一代的x,y同时向上移动2^i,确保没有”移过头“(就是p[x][i]=-1)
            x=p[x][i],y=p[y][i];                                                //还要确保p[x][i]=p[y][i]才能向上移动
    }
    return p[x][0];
}
int main()
{
    s[0]=1;
    for(int i=0;i<19;i++)
        s[i+1]=s[i]*2;
        int t=1;
    while(~scanf("%d",&nn))
    {
         int x,y,z;
         if(t!=1)printf("\n");
         printf("Case %d:\n",t++);
         for(int i=0;i<=n;i++) g[i].clear();
        for(int i=1;i<nn;i++)
        {
            scanf("%d%d",&x,&y);
            g[x].push_back(y);
            g[y].push_back(x);
        }
        init();
        int mm;scanf("%d",&mm);
        for(int i=1;i<=mm;i++)
        {
            scanf("%d%d%d",&x,&y,&z);
            int a=lca(x,y);
            if(deep[a]<=deep[z])
            {
                if(lca(x,z)==z || lca(y,z)==z)
                {
                    printf("Yes\n");
                    continue;
                }
            }
            printf("No\n");
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值