//离线算法是在dfs过程中进行相连两点的寻找最近祖先,
//在线算法是dfs结束后直接查找相连两点的最近祖先
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <string.h>
using namespace std;
const int n=50002;
vector<int> g[n];//表示图(树)
int nn;
int p[n][20];//表示向上翻2^i代的祖先节点
int vis[n],s[n];//s[i]表示2^i
int deep[n];//表示点i的深度
int dfs(int u,int fa,int dep)//作用:得到了第1代的祖先节点,得出树的深度
{
int tree_deep=dep;
deep[u]=dep;
p[u][0]=fa;//u的第2^0代祖先是u的父亲
vis[u]=1;
int len=g[u].size();
for(int i=0;i<len;i++)
{
int v=g[u][i];
if(vis[v]==0)
{
tree_deep=max(tree_deep,dfs(v,u,dep+1));//tree_deep是树的深度
}
}
return tree_deep;
}
void init()
{
memset(vis,0,sizeof vis);
memset(p,-1,sizeof p);
int tree_deep=dfs(0,-1,1);//tree_deep是树的深度
for(int i=1;s[i]<=tree_deep;i++)//依次得出2^i代的祖先节点
{
for(int j=1;j<n;j++)//依次得出节点j的2^i代的祖先节点
if(p[j][i-1]!=-1)
{
int tmp=p[j][i-1];//tmp是j点的第2^(i-1)代祖先
p[j][i]=p[tmp][i-1];//p[j][i]是j的第2^i代祖先,也就是tmp的第2^(i-1)代祖先
}
}
}
int lca(int x,int y)
{
if(deep[x]<deep[y]) x^=y,y^=x,x^=y;//确保节点x比y深
int log;
for(log=0;s[log]<=deep[x];log++);//2^log是x向上移动代数的上限
log--;
for(int i=log;i>=0;i--)
{
if(deep[x]-s[i]>=deep[y])//如果向上移动2^i代没有超过y那代
x=p[x][i];//x向上移动2^i代
}
if(x==y) return x;//上面那个for循环使得x和y在同一代上,如果刚好x就是y,返回x
for(int i=log;i>=0;i--)//从上限开始for循环遍历
{
if(p[x][i]!=-1 && p[x][i]!=p[y][i])//已经在同一代的x,y同时向上移动2^i,确保没有”移过头“(就是p[x][i]=-1)
x=p[x][i],y=p[y][i]; //还要确保p[x][i]=p[y][i]才能向上移动
}
return p[x][0];
}
int main()
{
s[0]=1;
for(int i=0;i<19;i++)
s[i+1]=s[i]*2;
int t=1;
while(~scanf("%d",&nn))
{
int x,y,z;
if(t!=1)printf("\n");
printf("Case %d:\n",t++);
for(int i=0;i<=n;i++) g[i].clear();
for(int i=1;i<nn;i++)
{
scanf("%d%d",&x,&y);
g[x].push_back(y);
g[y].push_back(x);
}
init();
int mm;scanf("%d",&mm);
for(int i=1;i<=mm;i++)
{
scanf("%d%d%d",&x,&y,&z);
int a=lca(x,y);
if(deep[a]<=deep[z])
{
if(lca(x,z)==z || lca(y,z)==z)
{
printf("Yes\n");
continue;
}
}
printf("No\n");
}
}
return 0;
}