1.大致就是:
2层for循环,循环!vis[i][j]的map[i][j],进行dfs,
在dfs中更新vis数组,dfs中,x < 0 || x >= n1 || y < 0 || y >= m || map_[x][y] != c||vis[x][y]都return ;
并在dfs中使得vis[x][y]=1;
最后用for循环遍历旁边的点,可以事先设置dxy[4][2] = {1,0,0,1,-1,0,0,-1};
模板题:
uva10336
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
using namespace std;
int vis[100][100];
char map_[100][100];
int n1,m,T;
int dxy[4][2] = {1,0,0,1,-1,0,0,-1};
struct node
{
char c;
int cnt;
bool operator < (const node n)const
{
if(n.cnt==cnt) return c<n.c;
else return cnt>n.cnt;
}
} n[26];
void dfs( int x, int y,char c)
{
if ( x < 0 || x >= n1 || y < 0 || y >= m || map_[x][y] != c)
return;
if(vis[x][y]) return ;
vis[x][y]=1;
for ( int i = 0 ; i < 4 ; ++ i )
dfs( x+dxy[i][0], y+dxy[i][1],c);
}
int main()
{
scanf("%d",&T);
for ( int t = 1 ; t <= T ; ++ t )
{
for(int i=0; i<26; i++)
{
n[i].cnt=0;
n[i].c='a'+i;
}
scanf("%d%d",&n1,&m);
for ( int i = 0 ; i < n1 ; ++ i )
scanf("%s",map_[i]);
memset( vis, 0, sizeof(vis) );
for(int i=0; i<n1; i++)
for(int j=0; j<m; j++)
{
if(!vis[i][j])
{
dfs(i,j,map_[i][j]);
n[map_[i][j]-'a'].cnt++;
}
}
printf("World #%d\n",t);
sort(n,n+26);
for(int i=0; i<26; i++)
if(n[i].cnt) cout<<n[i].c<<": "<<n[i].cnt<<endl;
}
return 0;
}
2.tarjan算法求割点(去掉割点图就不是连通图)
#include <iostream>
#include <vector>
#include <stdio.h>
#include <string.h>
using namespace std;//放在vector之前
int n;//节点数
int count;//dfs为dfn编号的计数器
int ans;
int dfn[110];//遍历的顺序,也就是遍历的编号
int low[110];//记录节点u或u的子树可以追溯到的最早(dfn数最小,或者说是最早遍历的节点)的祖先节点
int rootson;//记录根节点的子树个数,大于1就代表根节点是割点
int f[110];//在dfs中记录下每个节点的父节点,根节点的父节点是0
bool cut[110];//判断是否为割点
vector<vector<int> > G;//代表图,G[i]里面存的是与i相连接的节点,还有注意要有个空格的语法问题:
void init()
{
ans=0;
count=0;
G.clear();
G.resize(n+1);//对于这种类似于二维数组的容器,要resize一下……
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(f,0,sizeof(f));
memset(cut,0,sizeof(cut));
rootson=0;
}
void tarjan(int u,int fa)//一种dfs算法
{
dfn[u]=low[u]=++count;
f[u]=fa;
int len=G[u].size();
for(int i=0;i<len;i++)
{
int v=G[u][i];
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else if(fa!=v)
low[u]=min(dfn[v],low[u]);
}
}
int solve()
{
tarjan(1,0);
for(int i=2;i<=n;i++)
{
int v=f[i];
if(v==1) rootson++;
else if(dfn[v]<=low[i]) cut[v]=true;
}
for(int i=2;i<=n;i++)
if(cut[i]) ans++;
if(rootson>1) ans++;
return ans;
}
int main()
{
while(scanf("%d",&n),n)
{
init();
int a,b;
char ch;
while(scanf("%d",&a),a)
{
while(scanf("%d%c",&b,&ch))
{
G[b].push_back(a);
G[a].push_back(b);
if(ch=='\n') break;
}
}
printf("%d\n",solve());
}
return 0;
}
3.dfs的题目常常涉及到字符串和int数字的输入,以及输入输出格式问题,例如:
uva469
#include <iostream>
#include <cstdio>
#include <string.h>
using namespace std;
int t;
char map[110][110];
bool vis[110][110];
char tmp[110];
int dir[8][2]= {1,0,0,1,0,-1,-1,0,1,1,-1,1,-1,-1,1,-1};
int m,n;
int ans;
void dfs(int x,int y)
{
vis[x][y]=1;
for(int k=0; k<8; k++)
{
int dx=x+dir[k][0];
int dy=y+dir[k][1];
if(!vis[dx][dy] && dx>=0 && dx<m && dy>=0 && dy<n && map[dx][dy]=='W')
{
ans++;
dfs(dx,dy);
}
}
}
int main()
{
cin>>t;//cin没有把换行符提走,gets()提走了,scanf没有提走
getchar();
getchar();
int end=0;
while(t--)
{
m=0;
n=0;
if(end++) printf("\n");
while(gets(map[m++]) && !(map[m-1][0]>='0' && map[m-1][0]<='9'));
n=strlen(map[0]);
m--;
strcpy(tmp,map[m]);
do
{
int x,y;
if(strlen(tmp)==0) break;
memset(vis,0,sizeof(vis));
sscanf(tmp,"%d %d",&x,&y);
ans=1;
dfs(x-1,y-1);
printf("%d\n",ans);
}
while(gets(tmp));
}
return 0;
}
4.看这种dfs:uva1867
#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
using namespace std;
int n;
bool map[110][110];//记录j是否是i的依赖点
int ans[110];//每个点的依赖点数目,一旦赋值就不会变,因为我们是倒着求ans值的,也就是从最少的点开始……
int dfs(int i)//返回节点i的依赖点,由于没有环形,所以一个点不可能即是间接依赖点又是直接依赖点
{
if(ans[i]) return ans[i];
int Max=0;
for(int j=1;j<=n;j++)
if(map[i][j])
Max=max(Max,dfs(j)+1);
ans[i]=Max;
return Max;
}
int main()
{
while(scanf("%d",&n),n)
{
memset(map,0,sizeof(map));
memset(ans,0,sizeof(ans));
for(int i=1;i<=n;i++)
{
int t;scanf("%d",&t);
for(int j=0;j<t;j++)
{
int a;
scanf("%d",&a);
map[i][a]=1;
}
map[0][i]=1;//假设节点0与所有节点有依赖关系,我们要构造一个树,那么0就是树根
}
dfs(0);
int ans_=1;
for(int i=2;i<=n;i++)
{
if(ans[i]>ans[ans_]) ans_=i;
}
printf("%d\n",ans_);
}
return 0;
}
dfs(int x)遍历和x有关的点,ans=max(ans,dfs(next y)+1;但要注意:这里ans也有vis数组的功能