pytorch
有梦想的鱼
各位大佬,卷轻点,混口饭吃
展开
-
读取json一直报错:json.decoder.JSONDecodeError: Invalid control character at: line 1 column 9604653
json.decoder.JSONDecodeError: Invalid control character at: line 1 column 9604653原创 2023-02-17 11:29:15 · 535 阅读 · 0 评论 -
GPT2评测代码链接
GPT2评测代码原创 2023-01-02 15:47:30 · 157 阅读 · 0 评论 -
json写入中文乱码
如果json数据中文显示有问题,变成 \uXXX 的形式,原因是中文已经变为unicode编码了,而解码默认是以ASCII解的,中文不在ASCII编码中,所以无法显示,加上ensure_ascii=False可以防止变为unicode编码。原创 2022-12-30 18:44:14 · 697 阅读 · 0 评论 -
关于Pretrain、Fine-tuning、train
[转载]关于Pretrain、Fine-tuning - 别再闹了 - 博客园这两种tricks的意思其实就是字面意思,pre-train(预训练)和fine -tuning(微调)关于为什么可以直接使用别人的模型:这位博主写了几种fine-tuning的方法:这位答主在这篇中给出了一个关于fine-tuning非常practical的例子:fine-tuning:利用已有模型训练其他数据集 - 知乎转载 2022-12-07 16:56:34 · 3129 阅读 · 0 评论 -
中文繁体变简体
ython的zhconv库提供了基于MediaWiki词汇表的最大正向匹配简繁体转换,pyhton2和python3都支持,可以满足简单的转换需求。以下总结了zhconv从安装到使用的方法(python3)。转载 2022-10-24 10:07:04 · 128 阅读 · 0 评论 -
GPT2的应用和实现
用了新的数据集进行训练:百万级别的文本。同时模型规模也变大很多,参数量变为15亿(BERT_LARGE参数量3.4亿)。规模变大这么多的情况下,作者发现和BERT相比优势不大,所以选择了另一个观点作为切入点——Zero-shot(简单来说就是,训练好一个模型,在任何一个场景都能直接使用,泛化性很好)。GPT-2的架构非常非常大,参数量也非常多。非常神奇的事情发生了,GPT-2在完全没有训练数据。原创 2022-10-17 11:27:00 · 4396 阅读 · 1 评论 -
Pytorch nn.Parameter()不可变tensor变可训练tensor
torch.nn.Parameter是继承自torch.Tensor的子类,其主要作用是作为nn.Module中的可训练参数使用。它与torch.Tensor的区别就是nn.Parameter会自动被认为是module的可训练参数,即加入到parameter()这个迭代器中去;而module中非nn.Parameter()的普通tensor是不在parameter中的。转载 2022-09-21 20:54:13 · 886 阅读 · 0 评论 -
pytorch中bert字向量和句向量生成
看见网上的代码特别垃圾,经过不断整理,整理出最简单明白的版本原创 2022-09-21 15:54:18 · 689 阅读 · 0 评论 -
AttributeError: module ‘tokenization‘ has no attribute ‘FullTokenizer‘
AttributeError: module 'tokenization' has no attribute 'FullTokenizer'原创 2022-06-18 12:39:14 · 1123 阅读 · 1 评论 -
GCN的转载,记录一下
深入浅出了解GCN原理(公式+代码)转载 2022-06-02 11:20:29 · 119 阅读 · 0 评论 -
OSError: [WinError 127] 找不到指定的程序。
彻底解决 OSError: [WinError 127] 找不到指定的程序。 - Java教程 - 找一找教程网转载 2022-05-30 11:33:34 · 344 阅读 · 0 评论 -
pycharm创建虚拟环境(傻瓜式、超简单)
pycharm创建torch-gpu虚拟环境(手动、requirements.txt、requirements.yml)原创 2022-05-17 12:08:31 · 9096 阅读 · 1 评论 -
grid-crf(1)
grid-crf是在pystruct里面的一个针对网格图的crf,但是官方代码只能运用在python3.6且很难将其融入深度学习当中。网上几乎没有相关资料,没有办法,我经过不断调试源码,在这里对其进行总结X, Y = generate_crosses_explicit(n_samples=10, noise=12)#使用内置的数据集生成函数自动生成crf = GridCRF(neighborhood=8)#声明grid-crf类,但是这里只是声明了一个结构而已,里面大部分的内容是基于下面原创 2021-12-14 19:44:21 · 1359 阅读 · 0 评论 -
pystruct少了一个文件
File "D:\anaconda\lib\site-packages\pystruct\models\crf.py", line 5, in <module> from .utils import loss_augment_unariesModuleNotFoundError: No module named 'pystruct.models.utils'在models包里面少了utils文件原创 2021-12-09 19:06:54 · 907 阅读 · 0 评论 -
再次装pytorch gpu--检测是否成功(3)
>>> import torch>>> torch.__version__'1.9.0+cu102'>>> torch.cuda.is_available()True说明安装成功原创 2021-08-25 17:34:16 · 205 阅读 · 0 评论 -
再次装pytorch gpu--下载与安装(2)
第一步:卸载安装的pytorchcmd-》输入pip uninstall torch第二步:寻找匹配的pytorch安装官网选择https://pytorch.org/get-started/locally/复制代码pip3 install torch==1.9.0+cu102 torchvision==0.10.0+cu102 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html.原创 2021-08-25 17:29:07 · 290 阅读 · 1 评论 -
再次装pytorch gpu--准备工作(1)
根据前两天失败的经历,我痛定思痛决定换电脑来装pytorchgpu。为了成为祖国的科研力量,这点小小的挫折没有什么。第一步:gpu-z检测网上百度gpu-z,下载。参考链接https://blog.csdn.net/m0_37870649/article/details/105356540?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_utm_term~default-0.base&spm=.原创 2021-08-25 17:05:03 · 121 阅读 · 0 评论 -
安装pytorch gpu的失败经历
经过这几天不断的失败,我发现很多安装pytorch的教程都不是很完整,我在这里总结了一下,安装pytorch gpu的失败过程。这章的主要内容是讲安装cuda。我按照很多文章安装,都不行,我总结了一下我的问题,安装cuda的预备工作。1.检查电脑gpu版本。请参考教程https://segmentfault.com/a/1190000023355171任务管理器-》性能-》GPU查看我这里显示我的版本HD Graphic 5302.查询NVIDIA这里可以发现并.原创 2021-08-24 16:37:10 · 639 阅读 · 1 评论 -
pytorch_transformers(1)
通过研究代码的运行,发现pytorch_transformers和之前使用的tensorflow版的有很大不同。所以这里总结一下。这篇文章的目的是说明如何使用pytorch_transformers中的bert(1024)来编码词向量。第一步安装transformerspip install pytorch_transformers第二步下载必要的预训练文件链接:https://pan.baidu.com/s/1JYqzX1dPum9YwcgBTzpX9g提取码:w0md...原创 2021-08-19 21:43:17 · 610 阅读 · 0 评论 -
ValueError: tensorflow.__spec__ is None
将from transformers import BertTokenizer改为from pytorch_transformers import BertTokenizer原创 2021-08-16 11:41:23 · 4570 阅读 · 6 评论 -
torch.nn.LSTM
该函数的什么意思参考https://blog.csdn.net/m0_45478865/article/details/104455978输入的参数列表包括:input_size 输入数据的特征维数,通常就是embedding_dim(词向量的维度)hidden_size LSTM中隐层的维度num_layers 循环神经网络的层数bias 用不用偏置,default=Truebatch_first 这个要注意,通常我们输入的数据shape=(batch_size,seq_length转载 2021-08-10 20:48:09 · 228 阅读 · 0 评论 -
torch.cat([gen_embed, domain_embed], dim=2)
我对torch.cat做了以下实验不知道为什么模型代码会出现dim=2我推测可能是tensor变量维度低了于是我做了下面实验果然是这样原创 2021-08-10 11:43:07 · 1040 阅读 · 0 评论 -
torch.optim.Adam(parameters, lr)什么含义
已知parameters代表每个神经网络的参数矩阵,lr代表学习率。torch.optim.Adam是什么意思呢这个算法来自https://arxiv.org/abs/1412.6980以下黄色字体来自该文章的摘要Adam,一种基于低阶矩的自适应估计的随机目标函数一阶梯度优化算法。该方法易于实现,计算效率高,内存要求低,对梯度的对角线重新缩放具有不变性,并且非常适用于数据和/或参数较大的问题。该方法也适用于非平稳目标和具有非常嘈杂和/或稀疏梯度的问题。超参数具有直观的解释,通常几乎不需要调整原创 2021-08-02 01:22:57 · 4224 阅读 · 0 评论 -
python filter(lambda x: x.requires_grad, parameters)什么意思
今天读到一行代码parameters = filter(lambda x: x.requires_grad, parameters)#过滤之前讲过parameters是存储神经网络中间产数矩阵的变量。lambda x: x.requires_grad,parameters是什么意思呢查询到网页https://www.cnblogs.com/evening/archive/2012/03/29/2423554.html看个例子:g = lambda x:x+1下面是代码运行原创 2021-08-02 01:10:46 · 3837 阅读 · 6 评论 -
torch.nn.Parameter是什么功能
在代码调试的时候出现一个新的类torch.nn.Parameter。这个类的对象呈现一种奇怪的数据结构。v就是这个类的对象,其下面有T、data两个tensor变量,但是当我点开T的时候,如下图:无限套娃就诞生了。链接https://zhuanlan.zhihu.com/p/119305088给出了解释,他说是权重和偏置,总之是网络模型的参数,我先使用该链接下的代码。import torchclass Net(torch.nn.Module): # 继承to..原创 2021-08-01 18:02:52 · 826 阅读 · 1 评论 -
怎么查询pytorch-cpu版本
经过上一篇博客的思考,我发现我一直用的是pytorch-cpu版本现在我要换成pytorch-gpu,但是我又害怕这两版本不兼容,因为我已经在pytorch-cpu上做了很多功课了,万一一不小心把现在的pytorch-cpu删掉了,无法复现,那不是完蛋了于是我打算先查询pytorch-cpu版本cmd上输入import torchprint(torch.__version__)详情请看https://blog.csdn.net/weixin_29191761/article/det原创 2021-07-23 11:43:27 · 3087 阅读 · 0 评论 -
AssertionError: Torch not compiled with CUDA enabled到底是什么原因
代码运行报错AssertionError: Torch not compiled with CUDA enabled但是根据cuda安装显示cuda是安装成功的这是怎么回事我先进入百度翻译AssertionError:Torch未在启用CUDA的情况下编译CUDA未被启用?查到一篇博客https://www.codeleading.com/article/34623902176/上面说原来我当前版本pytorch无法使用显卡。。。问题解决...原创 2021-07-23 11:19:24 · 4415 阅读 · 1 评论