机器学习
文章平均质量分 57
有梦想的鱼
各位大佬,卷轻点,混口饭吃
展开
-
机器学习--【softmax-hardmax-sigmoid】【输出层函数与激活函数】【attention机制】(总结)
【softmax-hardmax-sigemoid】【输出层函数与激活函数】【attention机制】这三个问题还是一个问题,就是softmax和sigmoid分不清原创 2021-09-07 10:01:29 · 4227 阅读 · 0 评论 -
机器学习--回归分析--总结
首先透过现象看本质,回归分析的定义到底是什么?1.回归定义https://baike.baidu.com/item/%E5%9B%9E%E5%BD%92%E5%88%86%E6%9E%90/2625498?fr=aladdin提出在统计学中,回归分析(regression analysis)指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类原创 2021-09-04 21:54:25 · 1020 阅读 · 0 评论 -
数模经验--机器学习(1)聚类
1.DBSCN聚类算法DBSCAN的聚类定义很简单:由密度可达关系导出的最大密度相连的样本集合,即为我们最终聚类的一个类别,或者说一个簇[8]。DBSCAN的簇里面可以有多个核心对象。通过领域范围,让自己和其它簇密度可达,而最终的集合生成为一个DBSCAN聚类簇。簇样本集合是怎么形成的?DBSCAN使用的方法很简单,它任意选择一个没有类别的核心对象作为种子,然后找到所有这个核心对象能够密度可达的样本集合,即为一个聚类簇。然后继续选择另一个没有类别的核心对象去寻找密度可达的样本集合,这样就得到另一原创 2021-08-28 01:12:18 · 221 阅读 · 0 评论