深入理解CVPR 2019论文 Linkage Based Face Clustering via Graph Convolution Network基于图卷积的人脸聚类

论文的翻译可以参考这篇博客
CVPR 2019 Linkage Based Face Clustering via Graph Convolution Network论文翻译
接下来是我的一些拙见。

1.解决的问题

该工作要解决的问题是人脸特征分布复杂情况下的人脸聚类任务。受遮挡、光照等因素的影响,人脸特征的分布复杂,会面临两个难题:1)预先假设数据分布的方法不再适用,例如K-Means聚类方法(需要输入类的数量);2)而不需假设数据分布的方法在有着较高的计算复杂度,在大规模聚类问题上不适用。

2.解决方案

本文提出将聚类问题当做连接预测问题,预测一个节点是否应当与它的k个近邻(kNN)连接,因此不需预设类的数量。由于需要计算节点的kNN,因此计算复杂度为O(nlogn),是可分级控制的且可以应用在大规模的聚类问题上。

连接预测流程为:1)为人脸图片提取特征;2)通过knn搜索找到每个节点的前k个近邻(kNN);3)为每个节点建图,并传入GCN得到与其kNN连接的可能性;4)进一步筛选得到最终的聚类结果。

以下为具体的pipeline(以15张人脸图像为例)。

在这里插入图片描述
设每个节点的1跳邻居个数k1=2,2跳邻居的个数k2=2,建图时节点的连接数u=3。

① 利用cnn对数据集中的人脸图片提取特征;

② 通过暴力搜索或kd树搜索找到每个节点i的2个1跳邻居并存储在列表knn_graph中,之后在knn_graph中找到1跳邻居的1跳邻居,也就是节点i的2跳邻居。 最终获得建图所需的全部节点。
举个栗子。在这里插入图片描述假设上图是全部的15张人脸,并且我们已经通过搜索算法(暴力搜索或kd树)得出了他们之间的距离和相对位置。现在要将每个节点k1(=2)个1跳邻居和2跳邻居求出来。从图中可以看到节点1的最近邻是2、4,因此2、4就是节点1的1跳邻居,同理节点2的1跳邻居是12、9。因此列表knn_graph是这样的

中心节点1跳邻居
12,4
212,9
310,14
410,5
54,11
612,2
73,15
810,15
92,12
108,4
115,13
122,6
133,14
143,13
153,7

现在还需要得到每个节点的2跳邻居,其实这是根据1跳邻居得到的,比如节点1,它的1跳邻居为2、4,而2的1跳邻居为12、9,4的1跳邻居为5、10,因此节点1的2跳邻居为12、9、5、10,至此,我们也就获得了以节点1为中心节点建图所需的全部节点。如图所示
在这里插入图片描述

③ 为每一个节点建立一张图。以第一张图为例,中心节点为1,它的1跳及2跳邻居为Vp:1、2、4、12、9、10、5。对于Vp中的每一个节点v,找到v的前3个近邻,若近邻中的节点r也在Vp中,则连接(v, r)。最终建立的图为在这里插入图片描述

④ 将所有的图传入GCN。GCN的表达式为

Y = σ ( [ X ∣ ∣ G X ] W ) Y=\sigma ([X||GX]W) Y=σ([XGX]W)

其中 X X X 为图的特征矩阵,且 X ∈ R N × d i n X \in \R^{N\times d_{in}} XRN×din Y ∈ R N × d o u t Y \in \R^{N\times d_{out}} YRN×dout d i n d_{in} din d o u t d_{out} dout 是输入/输出节点矩阵的维度。 G = Λ − 1 / 2 A Λ − 1 / 2 G=\Lambda^{-1/2}A\Lambda^{-1/2} G=Λ1/2AΛ1/2是聚合矩阵,A为邻接矩阵, Λ \Lambda Λ是对角矩阵且 Λ i i = ∑ j A i j \Lambda_{ii}=\sum_{j}A_{ij} Λii=jAij。运算符||表示沿特征维度拼接矩阵。W是图卷积网络的权重矩阵,大小为 2 d i n × d o u t 2d_{in}\times d_{out} 2din×dout,最外层的是非线性激活函数。

本文的GCN有4个卷积层,第一层输入维度为512,输出维度为512。第二层输出维度为512,第三层与第四层输出维度都为256。卷积层之后是分类器,包括两个全连接层,其间激活函数为PReLU。最后通过softmax函数得到预测的边权 没有softmax

⑤ GCN的输出为中心节点与其1跳邻居的边权,组合15张图的中心节点及其1跳邻居的边及边权。(2跳邻居只是为了获得邻接矩阵,不会有边权)
在这里插入图片描述

⑥ 根据边权进行聚类。使用可变阈值th以及最大合并数来防止聚类结果中某一类出现过大的聚类。阈值th初始为边权的最小值。聚类规则为:随着迭代次数增多,th增大,在每一次迭代中,确定连接权值大于阈值的边,如果该类的个数已超过max size,那么将该边待定,留到下一次迭代中再判断(下一次迭代中会有更大的th进行筛选)。

⑦ 连接着的节点为一类,最终得到聚类结果。

在这里插入图片描述

  • 16
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 24
    评论
Abstract—Clustering face images according to their latent identity has two important applications: (i) grouping a collection of face images when no external labels are associated with images, and (ii) indexing for efficient large scale face retrieval. The clustering problem is composed of two key parts: representation and similarity metric for face images, and choice of the partition algorithm. We first propose a representation based on ResNet, which has been shown to perform very well in image classification problems. Given this representation, we design a clustering algorithm, Conditional Pairwise Clustering (ConPaC), which directly estimates the adjacency matrix only based on the similarities between face images. This allows a dynamic selection of number of clusters and retains pairwise similarities between faces. ConPaC formulates the clustering problem as a Conditional Random Field (CRF) model and uses Loopy Belief Propagation to find an approximate solution for maximizing the posterior probability of the adjacency matrix. Experimental results on two benchmark face datasets (LFW and IJB-B) show that ConPaC outperforms well known clustering algorithms such as k-means, spectral clustering and approximate Rank-order. Additionally, our algorithm can naturally incorporate pairwise constraints to work in a semi-supervised way that leads to improved clustering performance. We also propose an k-NN variant of ConPaC, which has a linear time complexity given a k-NN graph, suitable for large datasets. Index Terms—face clustering, face representation, Conditional Random Fields, pairwise constraints, semi-supervised clustering.
评论 24
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值