如何建立风险分析模型

看了一段时间文献,决定重新写一下这篇文章。
Notes: 下文主要针对传染病研究中的风险预测

传染病风险预测可分为三类,第一类是基于统计学建模的预测方法,它主要包括三个方面的内容:广义线性模型、时间序列模型(ARIMA模型)以及灰色系统理论。广义线性模型是应用最为广泛的模型,常用的有泊松回归[6,7,8]、线性回归[9,10,11]、逻辑回归[12]等。例如在泊松回归的应用中,Zhang[6]等人针对各宏观因素对艾滋病传播影响的地域差异性未得到充分研究的问题,通过地理加权泊松回归模型分析了2012年全国31个省、直辖市和自治区的宏观因素包括经济水平、交通、社会保障及卫生水平对艾滋病发病数影响的空间变化特征。Xu[7]等人利用泊松回归模型进行气象因素与传染病发病率的相关性分析,评价地区气象因素(气温、湿度、日照)对呼吸道传染病的影响。Chen[8]等人同样是利用泊松分布探究气象因素对传染病的影响,但他们分别对各病种与6个气象因素在单因素分析中有统计学意义的因素进行多因素分析,实验设计更加合理。而在线性回归模型的应用中,Wang[9]等人利用改进的线性回归模型,也就是局部加权线性回归对肺结核的传播进行建模分析,它可以对一些数据欠拟合现象进行一种线性回归分析。也有研究者运用线性回归模型对出血热、乙型肝炎等疾病进行了成功的预测[10,11]。

除了广义线性回归模型,基于ARIMA模型的预测方法在传染病预测中也占有重要的地位。ARIMA模型由Box和Jenkins于1976年提出,是时间序列分析中被广泛应用的分析模型,也是B-J方法中重要的时间序列分析预测模型[13],应用最为广泛的是SARIMA和ARIMAX。SARIMA模型是一种针对季节性变化时间序列分析的建模方法,广泛应用于传染病的预测。Fu[14]等人通过时间序列分析建立SARIMA模型并预测苏州市2019年肺结核的发病情况。值得一提的是,Briët[15]等人基于SARIMA模型添加了协变量,例如邻近地区的传染病病例数或降雨,以改善SARIMA模型预测的能力。除了SARIMA模型,还有很多研究使用了ARIMAX模型对传染病发病情况进行预测[16-19]。

基于灰色系统理论建模是另一种属于统计学建模的预测方法,它对生成数列建模而不是原始数据。许多研究者将灰色系统理论应用到了传染病传播的预测中[20-24],但是当数据序列离散比较大时,提升模型的精度就成了一个难题。基于统计学模型的预测方法大多是基于历史发病例拟合曲线,进而预测,并没有考虑到传染病传播的各个因素例如空间因素与免疫因素

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值