已知一个正整数N,问从1~N中任选出三个数,他们的最小公倍数最大可以为多少。
输入一个正整数N。
1 <= N <= 106。
代码
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
long a,b;
Scanner cin=new Scanner(System.in);
while(cin.hasNext()){
a=cin.nextInt();
if(a==1)
b=1;
else if(a==2)
b=2;
else if(a%2==1)
b=a*(a-1)*(a-2);
else if(a%3==0)
b=(a-1)*(a-2)*(a-3);
else
b=a*(a-1)*(a-3);
System.out.println(b);
}
cin.close();
}
}
变量类型不对0分
我们心目中的最小最大公倍数是1.三个数都大2.三个数不要相约,能相约就等于取了一个较小数。
对于1.相邻的两个数除1,2,其余互相没有倍数关系,
2.相邻的两个奇数除1,3,其余互相没有倍数关系即相邻
所以,取最大的两个奇数和他们之间的偶数这可能是最优解(n为奇数一定是),对于n为偶数如果最大的两个奇数与最大偶数即n无倍数关系,那么这也是最优解。那么纠结在于n(偶数)与n-3有无倍数关系,不难发现你不是3的倍数那么n(偶数)与n-3无倍数关系