leetcode120.三角形最小路径和

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。

 

例如,给定三角形:

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

 

说明:

如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。

1.深度优先搜索

从起点开始,对于每个元素往下搜索,寻找下一行在其整下方和右下方的元素,直到到达最后一行

代码如下:

class Solution {
public:
    int minNum=100000;
    int minimumTotal(vector<vector<int>>& triangle) {
       dfs(triangle,0,0,0);
       return minNum;
      

    }
    void dfs(vector<vector<int>> &triangle,int line,int pos ,int sum)
    {
       if(line==triangle.size()-1&&pos<=line)//最后一行
       {
          minNum=min(minNum,sum+triangle[line][pos]);
          return;
       }
       if(line==triangle.size()||pos>line)//越界
         return;
        dfs(triangle,line+1,pos,sum+triangle[line][pos]);
        dfs(triangle,line+1,pos+1,sum+triangle[line][pos]);
    }
};

结果时间复杂度过高

2.借助辅助数组

申请辅助数组存储计算过程中的结果和,对于新数组,其(i,j)位置的值来源于原数组min((i-1,j),(i-1,j-1))+(i,j)

对于行首与行尾元素特殊对待

代码如下:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
      int heights=triangle.size();//行数
      vector<vector<int>> res(heights,vector<int>(heights,0));
      res[0][0]=triangle[0][0];
      for(int i=1;i<heights;i++)
        for(int j=0;j<=i;j++)
        {
          if(j==0)
            res[i][j]=res[i-1][j]+triangle[i][j];//当前行第一个元素
         else if(j==i)
            res[i][j]=res[i-1][j-1]+triangle[i][j];//当前行最后一个元素
         else
            res[i][j]=min(res[i-1][j],res[i-1][j-1])+triangle[i][j];
        }

        int minNum=res[heights-1][0];
        for(int i=0;i<heights;i++)
           minNum=min(minNum,res[heights-1][i]);
      
      return minNum;
    }
};

时间复杂度与空间复杂度不符合要求

其实可以将辅助数组设为原数组,直接在原数组上进行修改,但这样会导致原数组的值不再被保存

3.将二维数组改为一维

将方法2改为自底向上,设一维数组,数组的长度为Height+1,将求路径和的过程逆序向上。

代码如下:

class Solution {
public:
    int minimumTotal(vector<vector<int>>& triangle) {
      int height=triangle.size();
      if(height==0)
        return 0;
        vector<int> dp(height+1,0);
        for(int i=height-1;i>=0;i--)
        {
            for(int j=0;j<=i;j++)
              dp[j]=min(dp[j],dp[j+1])+triangle[i][j];
        }
        return dp[0];
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值