LeetCode 39. 组合总和

该博客详细介绍了LeetCode 39题的解决方案,即组合总和问题。文章重点讲解了如何通过回溯算法解决此问题,并讨论了如何修改标准回溯框架来允许重复使用数组中的元素。作者提供了完整的C++代码实现,展示了如何递归遍历回溯树以找到所有可能的组合。
摘要由CSDN通过智能技术生成

题目描述

39. 组合总和

解法

这道题超级简单,如果你看过 LeetCode 77. 组合 这篇的解法,你肯定知道 backtrace 时 i i i 都是从 s t a r t start start 开始,那么下一层回溯树就是从 s t a r t + 1 start + 1 start+1 开始,从而保证 n u m s [ s t a r t ] nums[start] nums[start] 这个元素不会被重复使用

// 回溯算法标准框架
for (int i = start; i < nums.size(); i++) {
    // ...
    // 递归遍历下一层回溯树,注意参数
    backtrack(nums, i + 1, target);
    // ...
}

但是,我们现在希望能够重复使用 n u m s [ s t a r t ] nums[start] nums[start] 这个元素,那么很好办嘛,我只要把 i + 1 i + 1 i+1 改成 i i i 即可

// 回溯算法标准框架
for (int i = start; i < nums.size(); i++) {
    // ...
    // 递归遍历下一层回溯树
    backtrack(nums, i, target);
    // ...
}

下面是完整实现

class Solution {
public:

    vector<vector<int>> res;

    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        int trackSum;
        vector<int> track;
        backtrace(candidates, target, 0, track, trackSum);
        return res;
    }

    void backtrace(vector<int>& candidates, int target, int start, vector<int>& track, int trackSum)
    {
        if (trackSum == target)
        {
            res.push_back(track);
            return;
        }

        if (trackSum > target) return;

        for (int i = start; i < candidates.size(); i++)
        {
            trackSum += candidates[i];
            track.push_back(candidates[i]);
            backtrace(candidates, target, i, track, trackSum);
            track.pop_back();
            trackSum -= candidates[i];
        }
    }
};
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值