最近一直在被催稿,被要求写一些关于健康和算法相关的东西,并提供了很多文献作为参考。被催的多了之后,必然会产生一个问题:我该如何写这篇推文?而每当不知道如何开始一件事或任务时,本能的会去向人请教或者去问AI,然后他们会根据问题和条件,给出一些具体的建议。
这是获取经验或智慧的非常自然的方法,自然到不知道什么时候学会的。如果把这个方法简化,大致可以描述为:当我们有一个问题,然后会去从老师、朋友或同事那获取建议或信息,最后我们会根据问题和建议,整合或包装成一个逻辑完整的答案。进一步,如果我们把“问题”替换成“查询”(Query),将获取的“信息或建议”替换成“键”(Key)和“值”(Value),那么这个从不同的信息源获取经验和智慧的方法便是近来应用很广泛的算法:交叉注意力机制(Cross-Attention Mechanism)。
从上图来看,交叉注意力机制的核心是让两个不同的信息源建立关联。具体来说,它包括查询(Query)、键(Key)、值(Value)三部分,分别代表当前信息源中关注的内容和参考信息源中的内容。通过计算查询向量和键向量之间的相似度,动态地选择参考信息源中与当前任务最相关的部分,并通过值向量进行信息提取。这种机制允许模型在处理一个信息源时,动态地参考另一个信息源的信息,从而更好地理解上下文或交互的信息,简言之,就是不同信息源之间的信息融合。
交叉注意力机制作为一种算法技术,已经在多个领域得到了广泛应用,特别是在肿瘤的风险、预后预测相关多模态学习中,能够融合患者的临床报告、分子诊断、影像病理相关的信息,提供更加准确和全面的医疗建议。
背景介绍
脑膜瘤是颅内最常见的原发性肿瘤之一,年发病率为 9.73/10万。磁共振成像(MRI)在脑膜瘤的诊断、随访和治疗中发挥着关键