记得那天深夜盯着屏幕,手里的浓缩咖啡已经凉透——团队刚接手的高分卫星影像地块分割项目在测试环境跑得顺畅,上了生产环境却把32核服务器直接干趴。控制台最后抛出的MemoryError像一记响亮的耳光:我们竟然用PIL在单线程里加载8GB的GeoTIFF文件(扶额)
当传统遥感遇上深度学习的暴击
地理空间数据处理的祖传手艺正在经历剧变。十年前用GDAL命令行工具就能称霸江湖的日子,在YOLOv8横空出世后彻底终结。但那些动辄数GB的遥感影像,就像卡在数字世界喉咙里的鱼刺——传统的分块读取策略遇到U-Net的滑动窗口,IO吞吐直接爆炸。
(这里插播个行业冷知识:GDAL的Python绑定直到2.3版本才支持with语句,知道这个冷知识的人现在孩子都会打酱油了)
内存杀手现形记
先来段教科书级的错误示范:
from PIL import Image
import numpy as np
# 毁灭性操作!千万别在生产环境尝试!
img = Image.open('50cm_resolution.tiff') # 这个文件头藏着16个波段
array = np.array(img) # 此处内存直接升天
经验老道的开发者会冷笑:怎么不用GDAL?但事情没那么简单:
from osgeo import gdal
dataset = gdal.Open('50cm_resolution.tiff')
band = dataset.GetRasterBand(1) # 只读第一个波段?
array = band.ReadAsArray() # 依然在加