2020杭电多校第二场 hdu6774 String Distance

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=6774

题目大意

给定一个字符串 A 和一个字符串 B , 有 Q 次查询

每次查询给出一段区间 [L , R] , 问 A[L...R] 和 B串的 LCS 为多少

解题思路 

定义 M 为 B 串的长度 , 先预处理跑一遍序列自动机 NEX 

其中 nex[ i ][ j ] 表示字符串 A 的 [ i + 1 , n ] 区间第一次出现字符 j 的位置

定义 dp [ i ][ j ] , 其含义为 —— 和B的前 i 个字符 , 匹配了长度为 j 的 LCS 的最短 A 前缀

即 LCS( B[1...i] , A[L...X] ) = j , X 为最小取值 , dp[ i ][ j ] = X 

再定义 pre = dp[ i - 1 ][ j - 1 ] , 那么

①、dp[ i ][ j ] = NEX[ pre ][ b[i] - 'a' ] 

②、dp[ i ][ j ] = dp[ i - 1 ][ j ]

当 dp[ i ][ j ] 的值小于等于 R 时 ,  LCS = j 合法

所以最后我们只要从 M 到 1 找到第一个 j 使得 dp[ M ][ j ] <= R 即可

AC_Code

#include<bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10 , M = 30;
int dp[N][M] , nex[N][M];
char a[N] , b[M];
signed main()
{
    ios::sync_with_stdio(false);
    cin.tie(0) , cout.tie(0);
    int T ;
    cin >> T ;
    while(T --)
    {
        cin >> a + 1 >> b + 1;
        int n = strlen(a + 1) , m = strlen(b + 1) , q;
        for(int j = 0 ; j < 26 ; j ++) nex[n][j] = n + 1;
        for(int i = n - 1 ; i >= 0 ; i --)
        {
            for(int j = 0 ; j < 26 ; j ++) nex[i][j] = nex[i + 1][j];
            nex[i][a[i + 1] - 'a'] = i + 1; 
        }
        cin >> q; 
        while(q --)
        {
            int l , r , lcs = 0;
            cin >> l >> r;
            for(int i = 0 ; i <= m ; i ++) for(int j = 0 ; j <= m ; j ++) dp[i][j] = 0x3f3f3f3f; 
            for(int i = 0 ; i <= m ; i ++) dp[i][0] = l - 1;
            for(int i = 1 ; i <= m ; i ++)
                for(int j = 1 ;  j <= i ; j ++)
                {
                    if(dp[i - 1][j] <= r) dp[i][j] = min(dp[i][j] , dp[i - 1][j]);
                    int pre = dp[i - 1][j - 1];
                    if(pre <= r && nex[pre][b[i] - 'a'] != 0 && nex[pre][b[i] - 'a'] <= r)
                    dp[i][j] = min(dp[i][j] , nex[pre][b[i] - 'a']);
                }
               for(int i = m ; i >= 1 ; i --) if(dp[m][i] <= r) { lcs = i ; break ; }
            cout << r - l + 1 + m - 2 * lcs << '\n';    
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值