You are trying to merge on object and datetime64[ns] columns.

用padas分别读取了csv文件和xlsx文件,根据有相同的date列,用 .merge 方法合并。

df=house_price_index.merge(shiller,on='date')\
   .merge(unemployment,on='date')\
   .merge(federal_funds_rate,on='date')
   .merge(gross_domestic_product,on='date')
ValueError: You are trying to merge on object and datetime64[ns] columns. If you wish to proceed you should use pd.concat

是因为date类型的不同导致无法将其合并。
这里先将其保存为csv文件,再读取,使其与其他文件类型一样。

federal_funds_rate.to_csv('/Users/lc3/Desktop/2019数据实验/house/fed_funds.csv')
federal_funds_rate=pd.read_csv('/Users/lc3/Desktop/2019数据实验/house/fed_funds.csv')

在这里插入图片描述
成功解决。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值