用padas分别读取了csv文件和xlsx文件,根据有相同的date列,用 .merge 方法合并。
df=house_price_index.merge(shiller,on='date')\
.merge(unemployment,on='date')\
.merge(federal_funds_rate,on='date')
.merge(gross_domestic_product,on='date')
ValueError: You are trying to merge on object and datetime64[ns] columns. If you wish to proceed you should use pd.concat
是因为date类型的不同导致无法将其合并。
这里先将其保存为csv文件,再读取,使其与其他文件类型一样。
federal_funds_rate.to_csv('/Users/lc3/Desktop/2019数据实验/house/fed_funds.csv')
federal_funds_rate=pd.read_csv('/Users/lc3/Desktop/2019数据实验/house/fed_funds.csv')
成功解决。