利用YOLOV5模型进行数据半自动标注

利用YOLOV5模型进行数据半自动标注


前言

利用训练好的yolo权重进行未标注图像的自动打标签功能,标签格式为txt格式,接着将txt格式的标签转换为xml格式。


一、YOLOV5模型进行数据半自动标注是什么?

将部分打完标签的数据利用YOLOV5模型进行训练,利用训练好的权重进行未标注图像的自动打标签功能,标注错误或漏标的框可以在LabelImg中手动调整。

二、使用步骤

1.YOLOV5进行训练并修改detect.py

1.1 yolov5训练
1.2 修改detect.py
(1)'–weights’为训练好的模型权重,default=ROOT / ‘best.pt’为模型权重路径;
(2)’–source’为未打标签的图片数据, default='G:/RGBD_data/0001112220601/3/rgb/'为图片路径;
(3)测试结果保存在’runs/detect/labels’路径中。

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
import argparse
import os
import sys
from pathlib import Path

import torch
import torch.backends.cudnn as cudnn

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync


@torch.no_grad()
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/VOC.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.1,  # confidence threshold
        iou_thres=0.1,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=True,  # show results
        save_txt=True,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
):
    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, im, im0s, vid_cap, s in dataset:
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        # print(xywh)
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        # print(line)
                        with open(f'{txt_path}.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                    if save_crop:
                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    continue
                    # cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path

                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer

                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'best.pt', help='model path(s)')
    # parser.add_argument('--source', type=str, default=ROOT / 'VOCData_test/222/rgb/', help='file/dir/URL/glob, 0 for webcam')
    parser.add_argument('--source', type=str, default='G:/RGBD_data/0001112220601/3/rgb/', help='file/dir/URL/glob, 0 for webcam')
    parser.add_argument('--data', type=str, default=ROOT / 'data/VOC.yaml', help='(optional) dataset.yaml path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.4, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='show results')
    parser.add_argument('--save-txt', default=True, action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', default=False, action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes',  nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

2.txt转换成xml格式

新建txt2xml.py,代码内dict为标签名,代码如下(示例):

from xml.dom.minidom import Document
import os
import cv2
 
def makexml(txtPath,xmlPath,picPath): #读取txt路径,xml保存路径,数据集图片所在路径
        dict = {'0': "head",#字典对类型进行转换
                '1': "bag",
                '2': "suitcase",
                '3': "child",
                '4':  "babycarriage",
                '5': "umbrella",
                '6': "flatcar",
                '7': "sack",
                }
        files = os.listdir(txtPath)
        for i, name in enumerate(files):
          xmlBuilder = Document()
          annotation = xmlBuilder.createElement("annotation")  # 创建annotation标签
          xmlBuilder.appendChild(annotation)
          txtFile=open(txtPath+name)
          txtList = txtFile.readlines()
          img = cv2.imread(picPath+name[0:-4]+".png")
          Pheight,Pwidth,Pdepth=img.shape
          for i in txtList:
             oneline = i.strip().split(" ")
 
             folder = xmlBuilder.createElement("folder")#folder标签
             folderContent = xmlBuilder.createTextNode("VOC2007")
             folder.appendChild(folderContent)
             annotation.appendChild(folder)
 
             filename = xmlBuilder.createElement("filename")#filename标签
             filenameContent = xmlBuilder.createTextNode(name[0:-4]+".png")
             filename.appendChild(filenameContent)
             annotation.appendChild(filename)
 
             size = xmlBuilder.createElement("size")  # size标签
             width = xmlBuilder.createElement("width")  # size子标签width
             widthContent = xmlBuilder.createTextNode(str(Pwidth))
             width.appendChild(widthContent)
             size.appendChild(width)
             height = xmlBuilder.createElement("height")  # size子标签height
             heightContent = xmlBuilder.createTextNode(str(Pheight))
             height.appendChild(heightContent)
             size.appendChild(height)
             depth = xmlBuilder.createElement("depth")  # size子标签depth
             depthContent = xmlBuilder.createTextNode(str(Pdepth))
             depth.appendChild(depthContent)
             size.appendChild(depth)
             annotation.appendChild(size)
 
             object = xmlBuilder.createElement("object")
             picname = xmlBuilder.createElement("name")
             nameContent = xmlBuilder.createTextNode(dict[oneline[0]])
             picname.appendChild(nameContent)
             object.appendChild(picname)
             pose = xmlBuilder.createElement("pose")
             poseContent = xmlBuilder.createTextNode("Unspecified")
             pose.appendChild(poseContent)
             object.appendChild(pose)
             truncated = xmlBuilder.createElement("truncated")
             truncatedContent = xmlBuilder.createTextNode("0")
             truncated.appendChild(truncatedContent)
             object.appendChild(truncated)
             difficult = xmlBuilder.createElement("difficult")
             difficultContent = xmlBuilder.createTextNode("0")
             difficult.appendChild(difficultContent)
             object.appendChild(difficult)
             bndbox = xmlBuilder.createElement("bndbox")
             xmin = xmlBuilder.createElement("xmin")
             mathData=int(((float(oneline[1]))*Pwidth+1)-(float(oneline[3]))*0.5*Pwidth)
             xminContent = xmlBuilder.createTextNode(str(mathData))
             xmin.appendChild(xminContent)
             bndbox.appendChild(xmin)
             ymin = xmlBuilder.createElement("ymin")
             mathData = int(((float(oneline[2]))*Pheight+1)-(float(oneline[4]))*0.5*Pheight)
             yminContent = xmlBuilder.createTextNode(str(mathData))
             ymin.appendChild(yminContent)
             bndbox.appendChild(ymin)
             xmax = xmlBuilder.createElement("xmax")
             mathData = int(((float(oneline[1]))*Pwidth+1)+(float(oneline[3]))*0.5*Pwidth)
             xmaxContent = xmlBuilder.createTextNode(str(mathData))
             xmax.appendChild(xmaxContent)
             bndbox.appendChild(xmax)
             ymax = xmlBuilder.createElement("ymax")
             mathData = int(((float(oneline[2]))*Pheight+1)+(float(oneline[4]))*0.5*Pheight)
             ymaxContent = xmlBuilder.createTextNode(str(mathData))
             ymax.appendChild(ymaxContent)
             bndbox.appendChild(ymax)
             object.appendChild(bndbox)
 
             annotation.appendChild(object)
 
          f = open(xmlPath+name[0:-4]+".xml", 'w')
          xmlBuilder.writexml(f, indent='\t', newl='\n', addindent='\t', encoding='utf-8')
          f.close()
 
 
makexml("G:/yolov5/yolov5-master/runs/detect/exp2/labels/", "G:/RGBD_data/0001112220601/3/xml/", "G:/RGBD_data/0001112220601/3/rgb/")

总结

本方法可以节省标注时间,但还是要对输出的标签进行手动微调。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值