4034: [HAOI2015]树上操作
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 4216 Solved: 1340
[Submit][Status][Discuss]
Description
有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
Input
第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
Output
对于每个询问操作,输出该询问的答案。答案之间用换行隔开。
Sample Input
5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3
Sample Output
6
9
13
HINT
对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。
Source
鸣谢bhiaibogf提供
【分析】
全裸…
貌似比洛谷上的树链剖分模板简单一些
【代码】
//HAOI 树上操作
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=100005;
int n,m,root,cnt,tot;
int pos[mxn],w[mxn],head[mxn];
struct edge {int to,next;} f[mxn<<1];
struct tree
{
int fa,son,sz,dep,top,s,e;
}e[mxn];
struct lenth
{
int l,r;ll sum,mark;
}t[mxn<<2];
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline void add(int u,int v) //加边
{
f[++cnt].to=v,f[cnt].next=head[u],head[u]=cnt;
}
inline void dfs1(int u) //第一次dfs
{
e[u].sz=1;
for(int i=head[u];i;i=f[i].next)
{
int v=f[i].to;
if(v==e[u].fa) continue;
e[v].dep=e[u].dep+1;
e[v].fa=u;
dfs1(v);
e[u].sz+=e[v].sz;
if(e[v].sz>e[e[u].son].sz)
e[u].son=v;
}
}
inline void dfs2(int u,int top) //第二次dfs
{
e[u].top=top;
e[u].s=++tot;
pos[tot]=u;
if(e[u].son)
{
dfs2(e[u].son,top);
for(int i=head[u];i;i=f[i].next)
{
int v=f[i].to;
if(v!=e[u].fa && v!=e[u].son)
dfs2(v,v);
}
}
e[u].e=tot;
}
inline void update(int num) //线段树更新
{
t[num].sum=t[num<<1].sum+t[num<<1|1].sum;
}
inline void ope(int num,ll c)
{
t[num].sum+=(ll)(t[num].r-t[num].l+1)*c;
t[num].mark+=c;
}
inline void pushdown(int num)
{
if(t[num].mark)
{
if(t[num].l==t[num].r) return;
ope(num<<1,t[num].mark);
ope(num<<1|1,t[num].mark);
t[num].mark=0;
}
}
inline void build(int num,int l,int r) //线段树build
{
t[num].l=l,t[num].r=r;
if(l==r)
{
t[num].sum=w[pos[l]];
return;
}
int mid=l+r>>1;
build(num<<1,l,mid);
build(num<<1|1,mid+1,r);
update(num);
}
inline void add(int num,int L,int R,int c) //线段树区间加
{
if(L<=t[num].l && t[num].r<=R)
{
t[num].mark+=c;
t[num].sum+=(ll)(t[num].r-t[num].l+1)*c;
return;
}
pushdown(num);
if(L<=t[num<<1].r) add(num<<1,L,R,c);
if(R>=t[num<<1|1].l) add(num<<1|1,L,R,c);
update(num);
}
inline ll query(int num,int L,int R)
{
if(L<=t[num].l && t[num].r<=R)
return t[num].sum;
ll ans=0;
pushdown(num);
if(L<=t[num<<1].r) ans+=query(num<<1,L,R);
if(R>=t[num<<1|1].l) ans+=query(num<<1|1,L,R);
return ans;
}
inline ll find(int x,int y)
{
ll ans=0;
int f1=e[x].top,f2=e[y].top;
while(f1!=f2)
{
if(e[f1].dep<e[f2].dep)
swap(x,y),swap(f1,f2);
ans+=query(1,e[f1].s,e[x].s);
x=e[f1].fa;
f1=e[x].top;
}
if(e[x].dep<e[y].dep)
ans+=query(1,e[x].s,e[y].s);
else
ans+=query(1,e[y].s,e[x].s);
return ans;
}
int main()
{
int i,j,u,v,x,y,c,opt;
n=read(),m=read();
fo(i,1,n) w[i]=read();
fo(i,2,n)
{
u=read(),v=read();
add(u,v),add(v,u);
}
dfs1(1);
dfs2(1,1);
build(1,1,n);
while(m--)
{
opt=read();
if(opt==1)
{
u=read(),c=read();
add(1,e[u].s,e[u].s,c);
}
if(opt==2)
{
u=read(),c=read();
add(1,e[u].s,e[u].e,c);
}
if(opt==3)
{
u=read();
printf("%lld\n",find(1,u));
}
}
return 0;
}