bzoj 4034 [HAOI2015]树上操作

4034: [HAOI2015]树上操作
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 4216 Solved: 1340
[Submit][Status][Discuss]
Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个

操作,分为三种:

操作 1 :把某个节点 x 的点权增加 a 。

操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。

操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1

行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中

第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5

1 2 3 4 5

1 2

1 4

2 3

2 5

3 3

1 2 1

3 5

2 1 2

3 3

Sample Output

6

9

13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

Source

鸣谢bhiaibogf提供


【分析】
全裸…
貌似比洛谷上的树链剖分模板简单一些


【代码】

//HAOI 树上操作 
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int mxn=100005;
int n,m,root,cnt,tot;
int pos[mxn],w[mxn],head[mxn];
struct edge {int to,next;} f[mxn<<1];
struct tree
{
    int fa,son,sz,dep,top,s,e;
}e[mxn];
struct lenth
{
    int l,r;ll sum,mark;
}t[mxn<<2];
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
inline void add(int u,int v)   //加边 
{
    f[++cnt].to=v,f[cnt].next=head[u],head[u]=cnt;
}
inline void dfs1(int u)    //第一次dfs 
{
    e[u].sz=1;
    for(int i=head[u];i;i=f[i].next)
    {
        int v=f[i].to;
        if(v==e[u].fa) continue;
        e[v].dep=e[u].dep+1;
        e[v].fa=u;
        dfs1(v);
        e[u].sz+=e[v].sz; 
        if(e[v].sz>e[e[u].son].sz)
          e[u].son=v;
    }
}
inline void dfs2(int u,int top)   //第二次dfs 
{
    e[u].top=top;
    e[u].s=++tot;
    pos[tot]=u;
    if(e[u].son)
    {
        dfs2(e[u].son,top);
        for(int i=head[u];i;i=f[i].next)
        {
            int v=f[i].to;
            if(v!=e[u].fa && v!=e[u].son)
              dfs2(v,v);
        }
    }
    e[u].e=tot;
}
inline void update(int num)   //线段树更新 
{
    t[num].sum=t[num<<1].sum+t[num<<1|1].sum;
}
inline void ope(int num,ll c)
{
    t[num].sum+=(ll)(t[num].r-t[num].l+1)*c;
    t[num].mark+=c;
}
inline void pushdown(int num)
{
    if(t[num].mark)
    {
        if(t[num].l==t[num].r) return;
        ope(num<<1,t[num].mark);
        ope(num<<1|1,t[num].mark);
        t[num].mark=0;
    }
}
inline void build(int num,int l,int r)   //线段树build 
{
    t[num].l=l,t[num].r=r;
    if(l==r)
    {
        t[num].sum=w[pos[l]];
        return;
    }
    int mid=l+r>>1;
    build(num<<1,l,mid);
    build(num<<1|1,mid+1,r);
    update(num);
}
inline void add(int num,int L,int R,int c)  //线段树区间加 
{
    if(L<=t[num].l && t[num].r<=R)
    {
        t[num].mark+=c;
        t[num].sum+=(ll)(t[num].r-t[num].l+1)*c;
        return;
    }
    pushdown(num);
    if(L<=t[num<<1].r) add(num<<1,L,R,c);
    if(R>=t[num<<1|1].l) add(num<<1|1,L,R,c);
    update(num);
}
inline ll query(int num,int L,int R)
{
    if(L<=t[num].l && t[num].r<=R)
      return t[num].sum;
    ll ans=0;
    pushdown(num);
    if(L<=t[num<<1].r) ans+=query(num<<1,L,R);
    if(R>=t[num<<1|1].l) ans+=query(num<<1|1,L,R);
    return ans;
}
inline ll find(int x,int y)
{
    ll ans=0;
    int f1=e[x].top,f2=e[y].top;
    while(f1!=f2)
    {
        if(e[f1].dep<e[f2].dep)
          swap(x,y),swap(f1,f2);
        ans+=query(1,e[f1].s,e[x].s);
        x=e[f1].fa;
        f1=e[x].top;
    }
    if(e[x].dep<e[y].dep)
      ans+=query(1,e[x].s,e[y].s);
    else
      ans+=query(1,e[y].s,e[x].s);
    return ans;
}
int main()
{
    int i,j,u,v,x,y,c,opt;
    n=read(),m=read();
    fo(i,1,n) w[i]=read(); 
    fo(i,2,n)
    {
        u=read(),v=read();
        add(u,v),add(v,u);
    }
    dfs1(1);
    dfs2(1,1);
    build(1,1,n);
    while(m--)
    {
        opt=read();
        if(opt==1)
        {
            u=read(),c=read();
            add(1,e[u].s,e[u].s,c);
        }
        if(opt==2)
        {
            u=read(),c=read();
            add(1,e[u].s,e[u].e,c);
        }
        if(opt==3)
        {
            u=read();
            printf("%lld\n",find(1,u));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值