bzoj 3524 [Poi2014]Couriers

本文介绍了一道名为Couriers的算法题目(POI2014),并提供了一种使用主席树的数据结构解决方案。任务是在给定的序列中查找是否存在一个数,在指定区间内出现的频率超过区间长度的一半。

3524: [Poi2014]Couriers
Time Limit: 20 Sec Memory Limit: 256 MB
Submit: 2203 Solved: 850
[Submit][Status][Discuss]
Description

给一个长度为n的序列a。1≤a[i]≤n。
m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2。如果存在,输出这个数,否则输出0。

Input

第一行两个数n,m。
第二行n个数,a[i]。
接下来m行,每行两个数l,r,表示询问[l,r]这个区间。

Output

m行,每行对应一个答案。

Sample Input

7 5

1 1 3 2 3 4 3

1 3

1 4

3 7

1 7

6 6

Sample Output

1

0

3

0

4

HINT

【数据范围】

n,m≤500000

2016.7.9重设空间,但未重测!

Source

By Dzy


【分析】
发现性质:答案唯一
然后就可以上主席树了= =


【代码】

//bzoj 3524
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mid (l+r>>1)
#define ll long long
#define M(a) memset(a,0,sizeof a)
#define fo(i,j,k) for(i=j;i<=k;i++)
using namespace std;
const int N=500005;
const int mxn=10000005;
int n,m,tot,cnt;
int a[N],b[N],root[N];
int ls[mxn],rs[mxn],c[mxn];
inline void build(int l,int r,int u,int &v,int k)
{
    v=(++cnt),c[v]=c[u]+1;
    if(l==r) return;
    ls[v]=ls[u],rs[v]=rs[u];
    if(k<=mid) build(l,mid,ls[u],ls[v],k);
    else build(mid+1,r,rs[u],rs[v],k);
}
inline int query(int l,int r,int u,int v,int k)
{
    if(l==r) return l;
    if(c[rs[v]]-c[rs[u]]>=k) return query(mid+1,r,rs[u],rs[v],k);
    if(c[ls[v]]-c[ls[u]]>=k) return query(l,mid,ls[u],ls[v],k);
    return 0;
}
int main()
{
    int i,j,l,r;
    scanf("%d%d",&n,&m);
    fo(i,1,n) scanf("%d",&a[i]),b[i]=a[i];
    sort(b+1,b+n+1);
    tot=unique(b+1,b+n+1)-b-1;
    fo(i,1,n) a[i]=lower_bound(b+1,b+tot+1,a[i])-b;
    fo(i,1,n) build(1,tot,root[i-1],root[i],a[i]);
    while(m--)
    {
        scanf("%d%d",&l,&r);
        printf("%d\n",b[query(1,tot,root[l-1],root[r],(r-l+1)/2+1)]);
    }
    return 0;
}
/*
7 5
1 1 3 2 3 4 3
1 3
1 4
3 7
1 7
6 6
*/
内容概要:本文详细介绍了一个基于Java与Vue的食品安全溯源与智能分析系统的设计与实现,涵盖项目背景、目标意义、面临挑战及解决方案,并阐述了系统的整体架构与核心技术模块。系统通过集成物联网设备实现全流程数据采集,采用分布式数据库保障大数据存储与高效访问,结合机器学习算法进行风险预测与智能预警,同时利用可视化技术呈现溯源链路与分析结果,实现了食品从生产到销售全过程的透明化、智能化管理。文中还提供了关键模块的代码示例,如数据清洗、特征提取、决策树模型训练与预测、溯源接口开发等,增强了项目的可实施性与参考价值。; 适合人群:具备Java开发基础、熟悉Spring Boot和Vue框架,有一定前后端开发经验的软件工程师或计算机专业学生,尤其适合从事食品安全、物联网、大数据分析等相关领域技术研发的人员; 使用场景及目标:①构建食品全链条溯源体系,提升企业对食品安全事件的快速响应能力;②实现生产流程数字化管理,支持政府监管与消费者透明查询;③应用机器学习进行风险建模与智能预警,推动食品行业智能化转型; 阅读建议:建议结合文中提供的模型描述与代码示例,深入理解各模块设计逻辑,重点关注数据处理流程、算法实现与前后端交互机制,可基于该项目进行二次开发或拓展应用于其他行业的溯源系统建设。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值