深度学习100例 | 第27天-卷积神经网络(CNN):艺术作品识别

本文通过卷积神经网络(CNN)实现艺术作品的识别,详细介绍了数据处理、模型构建、训练及评估过程。作者分享了从简单网络获得较好效果的观察,并提供相关资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是K同学啊!

今天的案例是世界名画的分类识别

🚀 我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
  • 数据和代码:📌【传送门】

🚀 来自专栏:《深度学习100例》

如果你是一名深度学习小白可以先看看我这个专门为你写的专栏:《小白入门深度学习》

  1. 小白入门深度学习 | 第一篇:配置深度学习环境
  2. 小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook
  3. 小白入门深度学习 | 第三篇:深度学习初体验
  4. 小白入门深度学习 | 第四篇:配置PyTorch环境

🚀 往期精彩-卷积神经网络篇:

  1. 深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天
  2. 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
  3. 深度学习100例-卷积神经网络(CNN࿰
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

K同学啊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值