相关滤波的视觉目标跟踪算法学习

本文探讨视觉目标跟踪的挑战,如数据有限、目标不确定性及场景复杂性,并介绍其基本框架。接着,详细阐述了不同类型的跟踪算法,重点讲解了相关滤波算法,包括MOSSE、KCF、SRDCF、STRCF、ASRCF、LBCF、CSR_DCF、UDT、GFS-DCF、DSST、SAMF、MCCT、Staple、CREST、DCFNet和SACFNet等,这些算法旨在解决边界效应、模型更新、计算复杂度等问题,提高跟踪性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关滤波的视觉目标跟踪算法学习内容
1.视觉目标跟踪的难点:
①训练数据有限。通用目标跟踪任务中,目标先验知识缺乏,仅有目标初始位置信息。
②目标不确定性。跟踪过程中, 随着目标尺寸、形状以及姿态等变化,其外观模 型存在明显差异;多目标跟踪任务中,当目标进出视野或者完全遮挡时,目标数量存在不确定性。
③场景复杂性。在实际场景中存在光照变化、 背景杂乱、遮挡以及图像分辨率低等挑战
2.视觉目标跟踪算法主体框架
①运动模型:确定目标搜索的候选
②特征提取:对目标或背景进行外观建模
③观测模型:根据目标或背景的外观模型,判断候选区域是否为目标区域
④模型更新:确定外 观模型和观测模型的更新策略
3.视觉目标跟踪算法类型:
①生成式跟踪算法:生成式跟踪算法对目标进行外观建模,利用跟踪序列中目标外观模型的相似性进行目标定位,选择与目标模板具有最大相似性或最小重建误差的候选区域作为跟踪结果。例如:粒子滤波、光流法、均值移位算法以及高斯混合模型
②判别式跟踪算法:对目标和背景同时进行外观建模,将跟踪任务视为目标和背景的分类问题,选择分类器输出最大值对应的候选区域作为跟踪结果。 基于支持向量机(SVM)、多示例学习、随机森林、在线 Boosting等经典分类器的跟踪算法以及基于相关滤波的跟踪算法。
4.相关滤波目标跟踪算法:
相关滤波跟踪算法基于相关性理论,构造相关滤波器作为在线分类器,通过在目标搜索区域 内对目标和背景进行分类,实现对目标的定位跟踪。其流程为:候选样本获

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值