输出用先序遍历创建的二叉树是否为完全二叉树的判定结果

利用先序递归遍历算法创建二叉树并判断该二叉树是否为完全二叉树。完全二叉树只能是同深度的满二叉树缺少最后一层倒数连续个叶子结点。先序递归遍历建立二叉树的方法为:按照先序递归遍历的思想将对二叉树结点的抽象访问具体化为根据接收的数据决定是否产生该结点从而实现创建该二叉树的二叉链表存储结构。约定二叉树结点数据为单个大写英文字符。当接收的数据是字符"#"时表示该结点不需要创建,否则创建该结点。最后判断创建完成的二叉树度是否为完全二叉树。需要注意输入数据序列中的"#"字符和非"#"字符的序列及个数关系,这会最终决定创建的二叉树的形态。
输入
输入为接受键盘输入的由大写英文字符和"#"字符构成的一个字符串(用于创建对应的二叉树)。
输出
对应的二叉树是否为完全二叉树的判断结果。若是输出"Y",否则输出"N"。
样例输入
A##
ABC####
AB##C##
ABCD###EF##G###
A##B##
ABC##D##EG###
样例输出
Y
N
Y
N
Y
Y
#include<iostream>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
struct node
{
	char date;
node *right, *left;
}*p;
int k;

void set(node * &p)
{
	char ch;
	cin >> ch;
	if (ch == '#')
	{
		p = NULL;
	}
	else
	{
		p   = new node;
		p->date = ch;
		p->left = NULL;
		p->right = NULL;
		set(p->left);
		set(p->right);
	}
}

void find(node *&p)
{
	if (p == NULL)
		return;
	if (p->left == NULL&&p->left == NULL)
	{
		k++;
		return;
	}
	else
	{
		find(p->left);
		find(p->right);
	}
}

int main()
{
	k = 0;
	set(p);
	queue<node*>q;
	q.push(p);
	while (!q.empty())
	{
		node *t = q.front();
		q.pop();
		if (t->left != NULL&&k == 0)
		{
			q.push(t->left);
		}
		else
		{
			if (t->left == NULL&&k == 0)
			{
				k = 1;
			}
			else
			{
				if (k == 1 && t->left != NULL)
				{
					k = 2;
					break;
				}
			}
		}
		if (t->right != NULL&&k == 0)
		{
			q.push(t->right);
		}
		else
		{
			if (t->right == NULL&&k == 0)
			{
				k = 1;
			}
			else
			{
				if (k == 1 && t->right != NULL)
				{
					k = 2;
					break;
				}
			}
		}
	}
	if (k == 2)cout << "N";
	else cout << "Y";
	return 0;
}
avg树 判定,左右高度差不能超过1
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值