卷积神经网络的python实现
这是本单建华老师著作的书。卷积神经网络是深度学习重要的模型之一,本书是基础入门读物,假设你没有机器学习的先验知识,你可以关注一下这个专栏的更新作为学习CNN的参考。
晴晴_Amanda
这个作者很懒,什么都没留下…
展开
-
CNN的Python实现——第六章:梯度反向传播算法
文章目录第6章 梯度反向传播算法6.1 基本函数的梯度6.2 链式法则6.3 深度网络的误差反向传播算法6.4 矩阵化6.5 softmax损失函数梯度计算6.6 全连接层梯度反向传播6.7 激活层梯度反向传播6.8 卷积层梯度反向传播6.9 最大值池化层梯度反向传播 第6章 梯度反向传播算法 6.1 基本函数的梯度 6.2 链式法则 6.3 深度网络的误差反向传播算法 6.4 矩阵化 6.5 softmax损失函数梯度计算 6.6 全连接层梯度反向传播 6.7 激活层梯度反向传播 6.8 卷积层梯度反向传原创 2020-07-23 15:48:24 · 1698 阅读 · 0 评论 -
CNN的Python实现——第五章:梯度下降法的最优化方法
文章目录第5章 基于梯度下降法的最优化方法5.1 随机梯度下降法SGD5.2 基本动量法5.3 Nesterov动量法5.4 AdaGrad5.5 RMSProp5.6 Adam5.7 AmsGrad5.8 学习率退火5.9 参数初始化5.10 超参数调优 第5章 基于梯度下降法的最优化方法 5.1 随机梯度下降法SGD 5.2 基本动量法 5.3 Nesterov动量法 5.4 AdaGrad 5.5 RMSProp 5.6 Adam 5.7 AmsGrad 5.8 学习率退火 5.9 参数初始化 5.1原创 2020-07-22 22:57:12 · 1468 阅读 · 0 评论 -
CNN的Python实现——第四章:卷积神经网络的结构
文章目录第4章 卷积神经网络的结构4.1 概述4.1.1 局部连接4.1.2 参数共享4.1.3 3D特征图4.2 卷积层4.2.1 卷积运算及代码实现4.2.2 卷积层及代码初级实现4.2.3 卷积层参数总结4.2.4 用连接的观点看卷积层4.2.5 使用矩阵乘法实现卷积层运算4.2.6 批量数据的卷积层矩阵乘法的代码实现4.3 池化层4.3.1 概述4.3.2 池化层代码实现4.4 全连接层4.4.1 全连接层转化成卷积层4.4.2 全连接层代码实现4.5 卷积网络的结构4.5.1 层的组合模式4.5.原创 2020-07-08 21:32:30 · 3049 阅读 · 0 评论 -
CNN的Python实现——第三章:神经网络
文章目录第三章:神经网络3.1 数学模型3.2 激活函数3.3 代码实现3.4 学习容量和正则化3.5 生物神经科学基础 第三章:神经网络 神经网络是对线性模型的升级,使之能对线性不可分的训练集达到好的分类效果,同时也是理解卷积神经网络的基础,其核心是引入非线性激活函数和多层结构。 3.1 数学模型 线性模型只能对线性可分的训练集达到较好的分类效果,那么怎么对其升级,使之能对线性不可分的训练集也达到好的分类效果呢?如果对线性模型的计算过程进行抽象,设输入行向量为 xxx,参数矩阵为 WWW,分值向量为 y原创 2020-07-07 20:52:02 · 1331 阅读 · 0 评论 -
CNN的Python实现——第二章:线性分类器
文章目录第二章:线行分类器2.1 线性模型2.1.1 线性分类器2.1.2 理解线性分类器2.1.3 代码实现2.2 softmax损失函数2.2.1 损失函数的定义2.2.2 概率解释2.2.3 代码实现2.3 优化2.4 梯度下降法2.4.1 梯度的解析意义2.4.2 梯度的几何意义2.4.3 梯度的物理意义2.4.4 梯度下降法代码实现2.5 牛顿法2.6 机器学习模型统一结构2.7 正则化2.7.1 范数正则化2.7.2 提前终止训练2.7.3 概率的进一步解释 第二章:线行分类器 2.1 线性模原创 2020-07-07 00:34:14 · 2277 阅读 · 0 评论 -
CNN的Python实现——第一章:机器学习基础
文章目录第一章:机器学习简介1.1 引言1.2 基本术语1.3 重要概念1.4 图像分类1.5 MNIST数据集简介 第一章:机器学习简介 1.1 引言 比如挑西瓜,怎么能挑出好西瓜呢?我们常常以一些属性(如根蒂、敲声、纹理、触感等等)来评判一个西瓜好坏。一般认为根蒂凹陷、敲声混响、触感硬滑和纹理清晰的瓜是好瓜。这些挑选西瓜的经验是人们掌握的知识,是在无数次挑选西瓜后总结出来的。 其实,机器学习的目的就是想让计算机和人们一样,能区分西瓜的好坏。那么如何让其掌握学习这些知识,是核心内容。 1.2 基本术语原创 2020-07-06 15:50:56 · 1289 阅读 · 0 评论 -
卷积神经网络的Python实现——目录【附书籍和源码】
以下是本书的目录,附赠百度网盘链接啊 目录 第 一部分 模型篇 第 1章 机器学习简介 2 1.1 引言 2 1.2 基本术语 3 1.3 重要概念 5 1.4 图像分类 12 1.5 MNIST数据集简介 15 第 2章 线性分类器 17 2.1 线性模型 17 2.1.1 线性分类器 18 2.1.2 理解线性分类器 19 2.1.3 代码实现 21 2.2 softmax损失函数 22 2.2.1 损失函数的定义 23 2.2.2 概率解释 24 2.2.3 代码实现 25 2.3 优化 26 2.原创 2020-07-05 23:42:04 · 1213 阅读 · 3 评论