[LeetCode 1372]二叉树中的最长交错路径

题目描述

给你一棵以 root 为根的二叉树,二叉树中的交错路径定义如下:

选择二叉树中 任意 节点和一个方向(左或者右)。
如果前进方向为右,那么移动到当前节点的的右子节点,否则移动到它的左子节点。
改变前进方向:左变右或者右变左。
重复第二步和第三步,直到你在树中无法继续移动。
交错路径的长度定义为:访问过的节点数目 - 1(单个节点的路径长度为 0 )。

请你返回给定树中最长 交错路径 的长度。

示例1

在这里插入图片描述
输入:root = [1,null,1,1,1,null,null,1,1,null,1,null,null,null,1,null,1]
输出:3
解释:蓝色节点为树中最长交错路径(右 -> 左 -> 右)。

示例2

在这里插入图片描述
输入:root = [1,1,1,null,1,null,null,1,1,null,1]
输出:4
解释:蓝色节点为树中最长交错路径(左 -> 右 -> 左 -> 右)。

示例3

输入:root = [1]
输出:0

提示

  • 每棵树最多有 50000 个节点。
  • 每个节点的值在 [1, 100] 之间。

思路分析

1.相似题目:
[LeetCode 687]最长同值路径

2.跟687题一样,先分析,dfs应该返回的是什么值?
在这里插入图片描述
如图,要求根节点的最长交错路径,则需要比较
a.左孩子右边最长交错路径 + 1
b.右孩子左边最长交错路径 + 1
c.二者中的较大值为所求
d.由于遍历当前节点的时候不知道当前节点是父节点的左孩子还是右孩子,所以我们使用pair类型返回a和b供父节点使用

3.空节点特例分析:
在这里插入图片描述
如图,空节点应该返回(-1,-1),叶节点返回(0,0)

代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int res = 0;
    pair<int, int> dfs(TreeNode* root)
    {
    	//空节点返回{-1,-1}
        if(!root) return {-1, -1};
        //叶节点返回(0, 0)
        if(!root->left && !root->right) return {0, 0};
        pair<int, int> l = dfs(root->left), r = dfs(root->right);
        //题目每个节点的数值都是一样的,故下面两行不用写
        // if(!root->left || root->left->val != root->val) l = {0, 0};
        // if(!root->right || root->right->val != root->val) r = {0, 0};
        if(root->left) res = max(res, l.second + 1);
        if(root->right) res = max(res, r.first + 1);
        return {l.second + 1, r.first + 1};
    }
    int longestZigZag(TreeNode* root) {
        if(!root) return 0;
        dfs(root);
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值