1.容错的基础概念:
(1).容错的三个阶段
错误检测–评估损坏程度–错误恢复以消除错误并重新启动
(2).前向错误恢复:
当前正在执行的进程从某一点继续,并对损坏和丢失的数据进行补偿
- 可以准确评估导致检测和造成损害的精确错误条件
- 可以消除流程(系统)状态中的错误
- 流程可以向前推进
(3).后向错误恢复:
当前进程被回滚到某个无错误的点,并重新执行进程的损坏部分,从而继续相同的请求服务
- 故障的性质是无法预见的,流程(系统)状态中的错误在不重新执行的情况下无法消除
- 可以恢复到系统的先前无错误状态
2.前向和后向错误恢复的比较:
前向:
a.优势:开销比较低
b.劣势:无法为特定系统的恢复设计提供通用机制,并且需要损伤评估和预测
后向:
a.优势:独立于损害评估,即能够从任意损害中恢复
b.劣势:
- 性能损失-恢复进程状态的开销可能相当大
- 不保证重复处理时错误不会持续,例如永久性故障、软件设计错误
- 系统状态的某些组件可能不可恢复
3.检查点(Checkpoint)和回滚(Rollback)
适用条件
- 允许时间冗余
- 针对瞬态硬件和许多软件设计故障
- 适用于非冗余和冗余体系结构
- 保证检查点是可行的
检查点
定义:定期维护\保存精确的系统状态或“快照”
- 快照间隔可以小到一条指令
- 通常,检查点间隔包括多条指令
- 当存在大量错误检测延迟时,可能不理想
回滚恢复
- 将进程回滚(或恢复)到保存状态,即检查点
- 重新启动计算
4.Checkpoint和Rollback必须的条件
适当的错误检测机制
- 应用程序内部:各种自检机制(如数据完整性、控制流检查、验收测试)
- 应用程序外部:信号(如异常终止)、丢失心跳、监视器计时器
确定要检查的数据-进程状态
(1).易失性状态:
- 程序堆栈(局部变量、函数调用返回指针)
- 程序计数器、堆栈指针、打开文件描述符、信号处理程序
- 静态和动态数据段
(2).持久状态:
与当前程序执行相关的用户文件(是否在进程状态中包含持久状态取决于应用程序,例如,持久状态通常是长期运行应用程序的重要部分)
(3).将检查点数据存储在稳定的存储器中
(4).确定要记录和重播的事件:
- 消息Messages
- 事件Events
- 事务Transactions
(5).Checkpoint的确定
- 消逝时间
- 接收或发送的消息,例如并行或分布式应用程序
- 脏状态的数量,例如数据库应用程序
- 关键函数调用
(6).提供重新启动计算的程序
(7).提供处理持久性错误的方法
5.分布式系统中的恢复
(1).流程通过交换信息来协作完成任务:
- 消息传递
- 共享内存
(2).一个进程的回滚可能需要其他进程也回滚到较早的状态
(3).所有合作进程都需要建立恢复点
6.网络化/分布式系统:本地状态
1.对于站点(计算机、进程) S i S_i Si,其在给定时间的本地状态 L S i LS_i LSi由分布式应用程序的本地上下文定义:
s
e
n
d
(
m
i
j
)
send(m_{ij})
send(mij) - 对应“将消息
m
i
j
m_{ij}
mij从
S
i
S_i
Si 传送到
S
j
S_j
Sj”这一事件
r
e
c
(
m
i
j
)
rec(m_{ij})
rec(mij) - 对应 "
S
j
S_j
Sj收到从
S
i
S_i
Si传送的消息
m
i
j
m_{ij}
mij"这一事件
t
i
m
e
(
x
)
time(x)
time(x) - 记录状态x的时间
2.transit和inconsistent消息:
(1)当
t
i
m
e
(
s
e
n
d
(
m
i
j
)
)
<
t
i
m
e
(
L
S
i
)
time(send(m_{ij})) < time(LS_i)
time(send(mij))<time(LSi)时,
s
e
n
d
(
m
i
j
)
∈
L
S
i
send(m_{ij}) \in LS_i
send(mij)∈LSi
(2)当
t
i
m
e
(
r
e
c
(
m
i
j
)
)
<
t
i
m
e
(
L
S
j
)
time(rec(m_{ij})) < time(LS_j)
time(rec(mij))<time(LSj)时,
r
e
c
(
m
i
j
)
∈
L
S
j
rec(m_{ij}) \in LS_j
rec(mij)∈LSj
即在LS状态之前发生的send和rec,都属于状态LS,不是一个点,而是从开始到LS这一段时间
(3)为站点 S i S_i Si和 S j S_j Sj定义了两组消息:
-
t r a n s i t ( L S i , L S j ) = { m i j ∣ s e n d ( m i j ) ∈ L S i ∧ r e c ( m i j ) ∉ L S j } transit(LS_i, LS_j) = \lbrace m_{ij} | send(m_{ij}) \in LS_i \wedge rec(m_{ij}) \notin LS_j \rbrace transit(LSi,LSj)={mij∣send(mij)∈LSi∧rec(mij)∈/LSj}
-
i n c o n s i s t e n t ( L S i , L S j ) = { m i j ∣ s e n d ( m i j ) ∉ L S i ∧ r e c ( m i j ) ∈ L S j } inconsistent(LS_i, LS_j) = \lbrace m_{ij} | send(m_{ij}) \notin LS_i \wedge rec(m_{ij}) \in LS_j \rbrace inconsistent(LSi,LSj)={mij∣send(mij)∈/LSi∧rec(mij)∈LSj}
7.网络化/分布式系统:全局状态
(1)系统的全局状态(GS)是其站点的局部状态的集合,即 G S = { L S 1 , L S 2 , … , L S n } GS=\lbrace LS_1,LS_2,…,LS_n \rbrace GS={LS1,LS2,…,LSn},其中n是系统中站点的数量
(2)三种全局状态:
-
一致全局状态(Consistent global state): ∀ i , ∀ j : 1 ≤ i , j ≤ n : : i n c o n s i s t e n t ( L S i , L S j ) = Φ \forall i,\forall j: 1 \leq i,j \leq n :: inconsistent(LS_i, LS_j) = \Phi ∀i,∀j:1≤i,j≤n::inconsistent(LSi,LSj)=Φ
-
无传输全局状态(Transitless globle state): ∀ i , ∀ j : 1 ≤ i , j ≤ n : : t r a n s i t ( L S i , L S j ) = Φ \forall i,\forall j: 1 \leq i,j \leq n :: transit(LS_i, LS_j) = \Phi ∀i,∀j:1≤i,j≤n::transit(LSi,LSj)=Φ
-
强一致全局状态(Strongly consistent global state):一致且无传输的全局状态
…待更新