Flink Java 自定义数据源

本文详细介绍了如何在Flink中实现自定义数据源,包括实现SourceFunction接口,测试过程,以及通过实现ParallelSourceFunction接口和继承RichParallelSourceFunction类来支持并发执行的步骤。
摘要由CSDN通过智能技术生成

在这里插入图片描述
实现SourceFunction接口

public class CustomNonParalleSourceFunc implements SourceFunction<Long> {
    boolean isRunning  = true;
    long count = 1;
    public void run(SourceContext<Long> ctx) throws Exception {
        while (true){
            ctx.collect(count);
            count++;
            Thread.sleep(2000);
        }
    }

    public void cancel() {
            isRunning = false;
    }
}

测试:

public static void main(String[] args) throws Exception {
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    nonParalleSourceFunc(env);
    env.execute("a");
}
private static void nonParalleSourceFunc(StreamExecutionEnvironment env) {
    DataStreamSource<Long> data = env.addSource(new CustomNonParalleSourceFunc()
    ).setParallelism(1);//只能为1
    data.print().setParallelism(2);
}

实现ParallelSourceFunction接口

public class CustomParalleSourceFunc implements ParallelSourceFunction<Long> {
    boolean isRunning  = true;
    long count = 1;
    public void run(SourceContext<Long> ctx) throws Exception {
        while (true){
            ctx.collect(count);
            count++;
            Thread.sleep(2000);
        }
    }

    public void cancel() {
            isRunning = false;
    }
}

测试

public static void main(String[] args) throws Exception {
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    paralleSourceFunc(env);
    env.execute("a");
}
private static void paralleSourceFunc(StreamExecutionEnvironment env) {
    DataStreamSource<Long> data = env.addSource(new CustomParalleSourceFunc()
    ).setParallelism(3);
    data.print().setParallelism(2);
}
/*
1> 1
2> 1
1> 1
2> 2
1> 2
2> 2
1> 3
1> 3
2> 3
2> 4
1> 4
2> 4
* */

继承RichParallelSourceFunction类
可以并发执行

public class CustomRichparalleSourceFunc extends RichParallelSourceFunction<Long> {
    boolean isRunning  = true;
    long count = 1;
    public void run(SourceContext<Long> ctx) throws Exception {
        while (true){
            ctx.collect(count);
            count++;
            Thread.sleep(2000);
        }
    }

    public void cancel() {
        isRunning = false;
    }

    @Override
    public void open(Configuration parameters) throws Exception {
        super.open(parameters);
    }

    @Override
    public void close() throws Exception {
        super.close();
    }
}

测试

public static void main(String[] args) throws Exception {
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    richParalleSourceFunc(env);
    env.execute("a");
}

private static void richParalleSourceFunc(StreamExecutionEnvironment env) {
    DataStreamSource<Long> data = env.addSource(new CustomRichparalleSourceFunc()
    ).setParallelism(3);
    data.print().setParallelism(3);
}

/*
3> 1
1> 1
2> 1
3> 2
2> 2
1> 2
3> 3
2> 3
1> 3
* */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值