【ChangeFormer论文】A TRANSFORMER-BASED SIAMESE NETWORK FOR CHANGE DETECTION

ChangeFormer网络利用Transformer模块和多层级结构的编码解码模块,实现对多尺度变化特征的学习,同时通过差异模块和下采样操作,有效降低计算复杂度,提升变化检测性能。在LEVIR和DSIFN数据集上表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:ChangeFormer

代码地址: github


目录

1.摘要

2.网络结构 

 2.1transformer模块

2.2下采样模块

 2.3差异模块(Difference Modul)

 2.4MLP和上采样

3.数据集及结果


1.摘要

 摘要:论文提出的ChangeFormer网络,与最近的变化检测网络不同的地方是:它是基于全卷积网络,设计了一个包含多层级结构的编码模块和MLP的解码模块的孪生网络,它能获得多尺度、长距离的不同粒度特征,并且端到端的网络在公开数据集上表现良好。

2.网络结构 

 

 2.1t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zy_destiny

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值