【SCPFCD】Change Detection Based on SupervisedContrastive Learning for High-ResolutionRemote Sensing

文章提出了一种名为SCPFCDD的新型监督对比预训练和微调框架,旨在改进高分辨率遥感图像的变化检测任务。通过CDContrast预训练和Land Contrastive Learning,该框架能有效提升编码器对变化信息的提取能力,从而改善孪生网络的性能。实验在多个数据集上验证了SCPFCD的有效性。
摘要由CSDN通过智能技术生成

 

目录

0.摘要

 1.背景

2.SCPFCD网络总体结构

 2.1  CDContrast Pretraining

2.2 Land Contrastive Learning

3.实验

3.1WHU数据集

 3.2 Season-Varying数据集

 3.3 SECOND数据集

3.4 类内类间距离度量可视化

3.5超参确定

3.6损失函数与精度曲线对比

3.7时间空间复杂度

整理不易,欢迎一键三连!!!


0.摘要

        变化检测(CD)是高分辨率双时遥感图像中一项具有挑战性的任务。最近CD任务的许多研究都集中在设计全卷积孪生网络架构上。然而,这些方法中的大多数通过随机值或ImageNet预训练模型来初始化编码器,而没有CD任务的先验知识,从而限制了CD模型的性能。在本文中,提出了一种新的监督对比预训练和微调CD(SCPFCD)框架,该框架由两个级联级组成,用于训练基于预训练编码器的CD网络。在第一个监督对比预训练阶段,孪生网络的编码器在标记的CD数据被要求解决所提出的CD对比预训练方法上引入的联合借口任务。所提出的CDContrast预训练方法包括基于监督对比学习的陆地对比学习(LCL)和代理CD学习。LCL专注于从双时图像中学习土地覆盖之间的空间关系,求解地物对比度任务,而代理CD学习在上采样模块的顶部执行代理CD任务,以避免LCL的局部最优并学习CD的特征。然后,在第二微调阶段,用预训练的编码器初始化的整个孪生网络

Pest detection based on UAV remote sensing images is an emerging field that has gained significant attention in recent years. UAVs provide a unique advantage in pest detection as they can cover large areas quickly and efficiently, and collect high-resolution images that enable detailed analysis of crop health. The process of pest detection using UAV remote sensing images involves several steps. First, the UAV is equipped with a multispectral camera that can capture images in different wavelengths. These images are then processed using computer vision algorithms to identify areas of the crop that may be affected by pests or diseases. The algorithms can analyze the images to identify changes in the color, texture, and shape of the plants, which may indicate the presence of pests or diseases. The data collected by the UAV is then used to generate maps that show the extent and severity of the pest infestation. The use of UAVs in pest detection has several advantages over traditional methods. UAVs can cover large areas quickly and efficiently, which saves time and resources. They can also collect high-resolution images that enable detailed analysis of crop health, which can help farmers make more informed decisions about pest management. Overall, pest detection based on UAV remote sensing images has the potential to revolutionize the way we monitor and manage pest infestations in crops. As technology continues to advance, we can expect to see more sophisticated algorithms and sensors that can detect pests and diseases with even greater accuracy and efficiency.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zy_destiny

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值