【SCPFCD】Change Detection Based on SupervisedContrastive Learning for High-ResolutionRemote Sensing

文章提出了一种名为SCPFCDD的新型监督对比预训练和微调框架,旨在改进高分辨率遥感图像的变化检测任务。通过CDContrast预训练和Land Contrastive Learning,该框架能有效提升编码器对变化信息的提取能力,从而改善孪生网络的性能。实验在多个数据集上验证了SCPFCD的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

目录

0.摘要

 1.背景

2.SCPFCD网络总体结构

 2.1  CDContrast Pretraining

2.2 Land Contrastive Learning

3.实验

3.1WHU数据集

 3.2 Season-Varying数据集

 3.3 SECOND数据集

3.4 类内类间距离度量可视化

3.5超参确定

3.6损失函数与精度曲线对比

3.7时间空间复杂度

整理不易,欢迎一键三连!!!


0.摘要

        变化检测(CD)是高分辨率双时遥感图像中一项具有挑战性的任务。最近CD任务的许多研究都集中在设计全卷积孪生网络架构上。然而,这些方法中的大多数通过随机值或ImageNet预训练模型来初始化编码器,而没有CD任务的先验知识,从而限制了CD模型的性能。在本文中,提出了一种新的监督对比预训练和微调CD(SCPFCD)框架,该框架由两个级联级组成,用于训练基于预训练编码器的CD网络。在第一个监督对比预训练阶段,孪生网络的编码器在标记的CD数据被要求解决所提出的CD对比预训练方法上引入的联合借口任务。所提出的CDContrast预训练方法包括基于监督对比学习的陆地对比学习(LCL)和代理CD学习。LCL专注于从双时图像中学习土地覆盖之间的空间关系,求解地物对比度任务,而代理CD学习在上采样模块的顶部执行代理CD任务,以避免LCL的局部最优并学习CD的特征。然后,在第二微调阶段,用预训练的编码器初始化的整个孪生网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zy_destiny

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值