目录
0.摘要
变化检测(CD)是高分辨率双时遥感图像中一项具有挑战性的任务。最近CD任务的许多研究都集中在设计全卷积孪生网络架构上。然而,这些方法中的大多数通过随机值或ImageNet预训练模型来初始化编码器,而没有CD任务的先验知识,从而限制了CD模型的性能。在本文中,提出了一种新的监督对比预训练和微调CD(SCPFCD)框架,该框架由两个级联级组成,用于训练基于预训练编码器的CD网络。在第一个监督对比预训练阶段,孪生网络的编码器在标记的CD数据被要求解决所提出的CD对比预训练方法上引入的联合借口任务。所提出的CDContrast预训练方法包括基于监督对比学习的陆地对比学习(LCL)和代理CD学习。LCL专注于从双时图像中学习土地覆盖之间的空间关系,求解地物对比度任务,而代理CD学习在上采样模块的顶部执行代理CD任务,以避免LCL的局部最优并学习CD的特征。然后,在第二微调阶段,用预训练的编码器初始化的整个孪生网络