题目描述
给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。
示例 1 :
输入:nums = [1,1,1], k = 2
输出: 2 , [1,1] 与 [1,1] 为两种不同的情况。
题解
思路一:暴力求解
class Solution {
public int subarraySum(int[] nums, int k) {
if (nums == null || nums.length == 0){
return 0;
}
int res = 0;
for (int i = 0;i < nums.length;i++){
int sum = 0;
for (int j = i;j < nums.length;j++){
sum += nums[j];
if (sum == k){
res++;
}
}
}
return res;
}
}
思路二:在暴力求解的方法中,我们在计算连续区间和的时候,重复计算了很多次。我们使用dp数组去存储从0到i的连续子数组的和(前闭后开),其中从i到j的区间和(前闭后开)为dp[j]-dp[i]
class Solution {
public int subarraySum(int[] nums, int k) {
if (nums == null || nums.length == 0){
return 0;
}
int[] dp = new int[nums.length + 1];
dp[0] = 0;
for (int i = 1;i <= nums.length;i++){
dp[i] = nums[i - 1] + dp[i - 1];
}
int res = 0;
for (int start = 0; start < nums.length; start++) {
for (int end = start + 1; end <= nums.length; end++) {
if (dp[end] - dp[start] == k)
res++;
}
}
return res;
}
}
思路三:在简化求和之后,我们使用哈希表,它用于存储所有可能的索引的累积总和以及相同累加和发生的次数。我们以以下形式存储数据:(sum_i ,sum_i 的出现次数)。我们遍历数组nums并继续寻找累积总和。每当我们遇到一个新的和时,我们在hashmap中创建一个与该总和相对应的新条目。如果再次出现相同的和,我们增加与map中的和相对应的计数。此外,对于遇到的每个总和,我们还确定已经发生 sum-k 总和的次数,因为它将确定具有总和 k的子阵列发生到当前索引的次数。我们将 count 增加相同的量。
class Solution {
public int subarraySum(int[] nums, int k) {
if (nums == null || nums.length == 0) return 0;
//dp[i]表示前i个数的和
int[] dp = new int[nums.length + 1];
for (int i = 1; i <= nums.length; i++) {
dp[i] = dp[i - 1] + nums[i - 1];
}
int ret = 0;
HashMap<Integer, Integer> map = new HashMap<>();
for (int i = 0; i < dp.length; i++) {
if (map.containsKey(dp[i] - k))
ret += map.get(dp[i] - k);
map.put(dp[i], map.getOrDefault(dp[i], 0) + 1);
}
return ret;
}
}