文章目录
前言
在数字信息的浩瀚海洋中,每一滴水珠都承载着人类智慧的光芒。随着人工智能技术的发展,我们有了新的灯塔——DeepSeek,它如同一位无所不知的智者,在知识的海洋里为我们导航。想象一下,你正站在一片无垠的信息沙漠边缘,每一步都可能踏入未知的领域,这时,如果有一盏明灯指引方向,该是多么令人振奋的事情!而DeepSeek,正是这样的一盏明灯。
故事从一个小小的梦想开始:让机器理解并生成自然语言,仿佛它们拥有自己的思维。这个梦想曾经看似遥不可及,但随着DeepSeek的诞生,这一切变得触手可及。DeepSeek不仅仅是一个语言模型的名字,它是通往未来的一扇大门,背后隐藏着无限的可能性和惊喜。它像是一位经验丰富的航海家,能够带领我们在数据的大海上破浪前行,发现那些被遗忘的宝藏——无论是深藏于古籍中的智慧,还是现代科技前沿的新知。
DeepSeek的魅力在于它的多功能性。它可以是你的私人老师,耐心地解答关于宇宙、生命乃至一切的好奇;也可以成为你的创意伙伴,在写作、编程或是设计时提供灵感与帮助。甚至,当你面对堆积如山的数据报告感到头疼时,DeepSeek就像一位得力助手,迅速梳理出关键信息,让复杂的问题迎刃而解。
更令人兴奋的是,DeepSeek的成长从未停止。每一天,它都在学习新事物,变得更加聪明、更加贴心。这种持续进化的能力,使得DeepSeek不仅仅满足于现状,而是不断突破自我,探索更多未知领域。就像一颗永不熄灭的星星,在技术的夜空中闪烁着希望之光。
在这个信息爆炸的时代,DeepSeek就像是我们的指南针,帮助我们在海量的信息中找到真正有价值的内容。无论你是科研工作者寻找最新的研究成果,还是企业主想要了解市场趋势,亦或是学生渴望解开学术难题,DeepSeek都能提供独一无二的支持。它不仅改变了我们获取信息的方式,也重新定义了人机交互的边界。
因此,当我们谈论DeepSeek时,我们不仅仅是在讨论一项技术创新,更是在展望一个充满无限可能的未来。这是一个由好奇心驱动,由技术实现的梦想旅程。准备好一起踏上这段奇妙之旅了吗?让我们跟随DeepSeek的脚步,共同开启探索知识宝库的新篇章。
福利福利💌💌💌免费的JAVA学习资料网盘地址: 👉👉👉 私信博主!
福利福利💌💌💌免费的JAVA学习资料网盘地址: 👉👉👉 私信博主!
福利福利💌💌💌免费的JAVA学习资料网盘地址: 👉👉👉 私信博主!
一、什么是DeepSeek
DeepSeek
是一个前沿的语言模型,由专业的团队开发,旨在推进人工智能领域中自然语言处理技术的发展。作为一个基于Transformer
架构的大规模预训练模型,DeepSeek
以其卓越的性能和创新性的设计著称。
DeepSeek
不仅参数量庞大,例如其LLM
版本拥有大约670亿参数,能够支持高达8192个token
的上下文长度,而且采用了先进的训练技术和框架,如多步学习速率调度器、HAI-LLM
训练框架等。这些特点使得DeepSeek
在理解复杂语句、长文本处理以及执行需要深厚背景知识的任务时表现得尤为出色。
此外,DeepSeek
还展示了强大的多模态处理能力,除了处理传统的文本数据外,还能解析并理解包括PDF
、Excel
在内的多种格式文件。这意味着它可以在更广泛的场景下为用户提供服务,无论是进行深度学术研究、法律文档分析还是商业智能报告生成。DeepSeek的应用场景非常广泛,从自动问答、文本生成到信息抽取、机器翻译等多个方面,都能够看到它的身影。凭借其先进的算法和技术,DeepSeek正在不断地推动着人工智能技术向更深层次发展,为用户带来前所未有的体验。
版本 | 参数量(Billion) | 上下文长度(Tokens) | 发布日期 |
---|---|---|---|
LLM | 67 | 8192 | 2024年1月 |
MoE | 16 | 8192 | 2024年1月 |
二、DeepSeek核心技术
2.1 Transformer架构
Transformer
架构自2017年由Vaswani
等人提出以来,已经成为自然语言处理(NLP
)领域中最具影响力的技术之一。它不仅革新了机器翻译等传统任务的处理方式,还为包括文本生成、问答系统在内的多种应用提供了强大的基础。以下是关于Transformer
架构的详细解析。
2.1.1 自注意力机制 (Self-Attention Mechanism)
(a) 核心思想
自注意力机制允许模型在处理一个序列时,同时关注序列中的其他部分。例如,在处理一句话时,每个词都可以根据上下文动态地调整其表示。这种机制有助于捕捉长距离依赖关系,而不像RNN那样需要逐步递归。简单来说就是实时根据上下文进行调整,类似一句谚语,时势造英雄。时势指的是上下文,英雄指的是模型处理的结果。
(b) 计算过程
自注意力机制的计算可以分为以下几个步骤:
-
输入表示
假设我们有一个输入序列 X = {x1,x2…xn},其中每个xi是一个向量(通常是词嵌入)。我们需要将这些向量映射为三个新的向量:Query (Q)、Key (K) 和 Value (V)。
-
计算注意力分数
对于每个位置 i,计算其与所有其他位置 j的相关性得分(通常称为“注意力分数”),公式如下:
-
归一化注意力分数
使用 Softmax 函数对注意力分数进行归一化,得到注意力权重:
-
加权求和
利用归一化的注意力权重对 Value 进行加权求和,得到最终的输出表示:
© 代码实现
以下是用 PyTorch
实现的自注意力机制代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert (
self.head_dim * heads == embed_size
), "Embedding size needs to be divisible by heads"
# 定义线性变换层
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
def forward(self, values, keys, queries, mask):
N = queries.shape[0] # Batch size
value_len, key_len, query_len = values.shape[1], keys.shape[1], queries.shape[1]
# 将输入分割为多头
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
queries = queries.reshape(N, query_len, self.heads, self.head_dim)
# 计算 Query, Key, Value
values = self.values(values)
keys = self.keys(keys)
queries = self.queries(queries)
# 计算注意力分数
energy = torch.einsum("nqhd,nkhd->nhqk", [queries, keys])
# energy shape: (N, heads, query_len, key_len)
if mask is not None:
energy = energy.masked_fill(mask == 0, float("-1e20"))
# 归一化注意力分数
attention = torch.softmax(energy / (self.embed_size ** (1 / 2)), dim=3)
# 加权求和
out = torch.einsum("nhql,nlhd->nqhd", [attention, values]).reshape(
N, query_len, self.heads * self.head_dim
)
# out shape: (N, query_len, embed_size)
# 最后一层全连接
out = self.fc_out(out)
return out
# 测试代码
if __name__ == "__main__":
embed_size = 256
heads = 8
batch_size = 64
seq_length = 10
attention = SelfAttention(embed_size, heads)
values = torch.rand((batch_size, seq_length, embed_size))
keys = torch.rand((batch_size, seq_length, embed_size))
queries = torch.rand((batch_size, seq_length, embed_size))
mask = None
output = attention(values, keys, queries, mask)
print(output.shape) # 输出形状应为 (batch_size, seq_length, embed_size)
- 输入准备:
- values, keys, queries 是输入的三个张量,分别对应 Value、Key 和 Query。
- 每个张量的形状为 (batch_size, seq_length, embed_size)。
- 多头拆分:
- 使用 reshape 方法将嵌入向量按头数拆分,每个头只处理一部分维度。
- 计算注意力分数:
- 使用
Einstein
求和约定(torch.einsum)高效计算 Q⋅KT 。 - Softmax 归一化:
对注意力分数进行Softmax
归一化,确保权重之和为 1。 - 加权求和:
利用注意力权重对Value
进行加权求和,得到最终的输出表示。 - 输出重塑:
将多头的结果拼接起来并通过一个全连接层输出。
💡贴士: 自注意力机制通过计算
Query
和Key
的点积来衡量序列中不同位置的相关性,并利用 Value 的加权求和生成新的表示。相比于传统的 RNN 或 CNN,它具有以下优点:
并行化
:不依赖顺序计算,适合大规模数据处理。
长距离依赖
:能够直接捕捉远距离的依赖关系。
灵活性
:支持多种任务,如机器翻译、文本生成等。
2.1.2 多头注意力 (Multi-Head Attention)
多头注意力机制是Transformer模型中的一个重要组成部分,它通过并行地执行多个自注意力机制来增强模型的表达能力。每个“头”关注输入的不同部分,使得模型能够同时捕捉不同类型的信息。
(a) 核心思想
在单一的自注意力层中,所有的信息都是通过一个固定的权重矩阵来转换的,这意味着它只能学习到一种类型的模式或关系。而多头注意力机制允许模型并行地使用多个不同的权重矩阵来处理相同的信息,从而可以关注输入序列中不同位置之间的多种不同类型的关系。
(b) 工作原理
- 输入表示:给定一个输入序列 X,首先通过线性变换生成三个新的表示:Query (Q)、Key (K) 和 Value (V)。
- 分割为多个头:将 Q、K、V 分割成多个部分(即多个头),每个头都有自己的权重矩阵WiQ,WiK,WiV(
i表示第几个头
)。这样做的目的是让每个头都能独立地学习输入的不同方面的特征。 - 计算注意力分数:对于每一个头,按照自注意力机制的步骤计算注意力分数,并进行归一化得到注意力权重。
- 加权求和:利用注意力权重对 Value 进行加权求和,得到每个头的输出。
- 拼接与投影:将所有头的输出拼接起来,并通过一个额外的线性变换(通常称为投影层)将其映射回原始维度。
© 数学描述
假设输入的嵌入维度为 d m o d e l d_{model} dmodel,并且我们希望使用 h h h 个注意力头,则每个头的维度为:
d k = d v = d m o d e l h d_k = d_v = \frac{d_{model}}{h} dk=<