汉诺塔问题之我见
1.汉诺塔问题的来源
古代有一个梵塔,A,B,C。开始时A座上有64个盘子,盘子大小不等,大的在上,小的在下。有一个老和尚想把64个盘子从A座移到C座,但每次只能移动一个盘子,且始终保证大盘在下,小盘在上。移动过程中可以利用B座。
2.汉诺塔算法
当只有一个盘子的时候,只需要从将A塔上的一个盘子移到C塔上。 当A塔上有两个盘子是,先将A塔上的1号盘子(编号从上到下)移动到B塔上,再将A塔上的2号盘子移动的C塔上,最后将B塔上的小盘子移动到C塔上。 当A塔上有3个盘子时,先将A塔上编号1至2的盘子(共2个)移动到B塔上(需借助C塔),然后将A塔上的3号最大的盘子移动到C塔,最后将B塔上的两个盘子借助A塔移动到C塔上。 当A塔上有n个盘子是,先将A塔上编号1至n-1的盘子(共n-1个)移动到B塔上(借助C塔),然后将A塔上最大的n号盘子移动到C塔上,最后将B塔上的n-1个盘子借助A塔移动到C塔上。 综上所述,除了只有一个盘子时不需要借助其他塔外,其余情况均一样(只是事件的复杂程度不一样)。
其中最重要的一点就是把(n-1)个盘子看成一个整体(一个盘子),实际上并不是一个盘子,我们需要把当前的一步执行完毕,再解决把(n-1)看成一个整体的事情。怎么解决呢?就是重复上面的步骤,再留下一个盘子,把剩下的一部分(n-1)(注意这里的n-1已经不同于上一个n-1,仍然写成n-1,是为了方便写汉诺塔子程序)看成整体,其实就是函数的递归调用,直到只剩下一个盘子的时候,把它移到C塔,任务完成。
3.程序的实现(这里利用了程序的嵌套调用和递归)
#include <stdio.h>
//三个塔分别叫做源塔(a),中塔(b),目塔©。
int main()
{
void hannuo(int n,char one,char two,char three);
char a,b,c;
int m;
printf(“请输入源塔上的盘子数:”);
scanf("%d",&m);
hannuo(m,‘a’,‘b’,‘c’);//把n个盘子从源塔移到目塔;
return 0;
}
void hannuo(int n,char one,char two,char three)
{void move(char x,char y);
if(n==1)
move(one,three);//把这个盘子从源塔搬到目塔;
else
{hannuo(n-1,one,three,two);//把n-1个盘子借助目塔从源塔搬到中塔;
move(one,three);//把这个盘子从源塔搬到目塔;
hannuo(n-1,two,one,three);}//把n-1个盘子借助源塔从中塔搬到目塔;
}
void move(char x,char y)
{
printf("%c–>%c\n",x,y);
}