2021-10-14

这篇博客介绍了多种方法判断一个整数是否为3的幂次方,包括迭代法、递归法和数学优化法。通过不断除以3,递归检查或者利用3的最大幂次对n取余,可以有效地确定n是否为3的幂。这些算法简洁且高效,适用于各种编程场景。
摘要由CSDN通过智能技术生成

3的幂

给定一个整数,写一个函数来判断它是否是 3 的幂次方。如果是,返回 true ;否则,返回 false 。

示例 1:
	输入:n = 27
	输出:true

示例 2:
	输入:n = 0
	输出:false

示例 3:
	输入:n = 9
	输出:true

示例 4:
	输入:n = 45
	输出:false

方法1:一直除以3
判断n是否能够被3整除,如果能够被3整除就除以3,直到不能被3整除为止,最后判断n是否等于1。

 public boolean isPowerOfThree(int n) {
        if (n > 1)
            while (n % 3 == 0)
                n /= 3;
        return n == 1;
    }
class Solution {
    public boolean isPowerOfThree(int n) {
        if(n==0){
            return false;
        }
        if(n==1){
            return true;
        }
       // 如果不是三的倍数,肯定就不是3的幂了
       if(n%3 != 0){
            return false;
        }
        // 如果整除3后的值不是三的倍数,就不是3的幂了
        // 如果n = 3了,那么肯定是三的幂了
        while (n!=3){
            if(n%3 != 0){
                return false;
            }
            n = n/3;
        }
        return true;
    }
}

方法2:递归

 public boolean isPowerOfThree(int n) {
        return n > 0 && (n == 1 || (n % 3 == 0 && isPowerOfThree(n / 3)));
    }

方法3:
题中n的范围是-2^ 31 <= n <= 2^31 - 1,而在这个范围内3的最大幂是1162261467,在比他大就超过int表示的范围了,我们直接用它对n求余即可,过求余的结果是0,说明n是3的幂次方.

 public boolean isPowerOfThree(int n) {
        return (n > 0 && 1162261467 % n == 0);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值